meisaicheck-api / services /sentence_transformer_service.py
vumichien's picture
Update model to cl-nagoya-sup-simcse-ja-nss-v1_0_8_4, add new standard name mapping functionality in prediction process, and enhance data loading in sentence transformer service.
ec235f7
raw
history blame
13.4 kB
import os
import pickle
import pandas as pd
import warnings
# Suppress pandas warnings globally
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=pd.errors.SettingWithCopyWarning)
pd.set_option("mode.chained_assignment", None)
import sys
from config import (
MODEL_NAME,
MODEL_TYPE,
DEVICE_TYPE,
SENTENCE_EMBEDDING_FILE,
STANDARD_NAME_MAP_DATA_FILE,
SUBJECT_DATA_FILE,
DATA_DIR,
HALF,
ABSTRACT_MAP_DATA_FILE,
NAME_ABSTRACT_MAP_DATA_FILE,
)
# Add the path to import modules from meisai-check-ai
# sys.path.append(os.path.join(os.path.dirname(__file__), "..", "meisai-check-ai"))
from sentence_transformer_lib.sentence_transformer_helper import SentenceTransformerHelper
from sentence_transformer_lib.cached_embedding_helper import CachedEmbeddingHelper
# Cache file paths for different types of embeddings
CACHED_EMBEDDINGS_SUBJECT_FILE = os.path.join(DATA_DIR, "cached_embeddings_subject.pkl")
CACHED_EMBEDDINGS_NAME_FILE = os.path.join(DATA_DIR, "cached_embeddings_name.pkl")
CACHED_EMBEDDINGS_ABSTRACT_FILE = os.path.join(
DATA_DIR, "cached_embeddings_abstract.pkl"
)
CACHED_EMBEDDINGS_SUB_SUBJECT_FILE = os.path.join(
DATA_DIR, "cached_embeddings_sub_subject.pkl"
)
CACHED_EMBEDDINGS_UNIT_FILE = os.path.join(DATA_DIR, "cached_embeddings_unit.pkl")
def load_cached_embeddings_by_type(cache_type):
"""Load cached embeddings from file based on type"""
cache_files = {
"subject": CACHED_EMBEDDINGS_SUBJECT_FILE,
"name": CACHED_EMBEDDINGS_NAME_FILE,
"abstract": CACHED_EMBEDDINGS_ABSTRACT_FILE,
"sub_subject": CACHED_EMBEDDINGS_SUB_SUBJECT_FILE,
"unit": CACHED_EMBEDDINGS_UNIT_FILE,
}
cache_file = cache_files.get(cache_type)
if not cache_file:
print(f"Unknown cache type: {cache_type}")
return {}, False
if os.path.exists(cache_file):
try:
with open(cache_file, "rb") as f:
cached_embeddings = pickle.load(f)
print(
f"Loaded {cache_type} embeddings with {len(cached_embeddings)} entries from {cache_file}"
)
return cached_embeddings, True
except Exception as e:
print(f"Error loading {cache_type} embeddings: {e}")
return {}, False
else:
print(
f"No {cache_type} embeddings cache file found. Starting with empty cache."
)
return {}, False
def save_cached_embeddings_by_type(cached_embedding_helper, cache_type):
"""Save cached embeddings to file based on type"""
cache_files = {
"subject": CACHED_EMBEDDINGS_SUBJECT_FILE,
"name": CACHED_EMBEDDINGS_NAME_FILE,
"abstract": CACHED_EMBEDDINGS_ABSTRACT_FILE,
"sub_subject": CACHED_EMBEDDINGS_SUB_SUBJECT_FILE,
"unit": CACHED_EMBEDDINGS_UNIT_FILE,
}
cache_file = cache_files.get(cache_type)
if not cache_file:
print(f"Unknown cache type: {cache_type}")
return
try:
# Ensure directory exists
os.makedirs(os.path.dirname(cache_file), exist_ok=True)
cached_embeddings = cached_embedding_helper._cached_sentence_embeddings
with open(cache_file, "wb") as f:
pickle.dump(cached_embeddings, f)
print(
f"Saved {cache_type} embeddings with {len(cached_embeddings)} entries to {cache_file}"
)
except Exception as e:
print(f"Error saving {cache_type} embeddings: {e}")
def create_cached_embedding_helper_for_type(sentence_transformer, cache_type):
"""Create a CachedEmbeddingHelper for specific embedding type"""
cached_embeddings, is_loaded = load_cached_embeddings_by_type(cache_type)
return CachedEmbeddingHelper(
sentence_transformer, cached_sentence_embeddings=cached_embeddings
), is_loaded
class SentenceTransformerService:
def __init__(self):
self.sentenceTransformerHelper = None
# Different cached embedding helpers for different types
self.unit_cached_embedding_helper = None
self.unit_is_loaded = False
self.subject_cached_embedding_helper = None
self.subject_is_loaded = False
self.sub_subject_cached_embedding_helper = None
self.sub_subject_is_loaded = False
self.name_cached_embedding_helper = None
self.name_is_loaded = False
self.abstract_cached_embedding_helper = None
self.abstract_is_loaded = False
# Map data holders
self.df_unit_map_data = None
self.df_subject_map_data = None
self.df_standard_subject_map_data = None
self.df_sub_subject_map_data = None
self.df_name_map_data = None
self.df_abstract_map_data = None
self.df_name_and_subject_map_data = None
self.df_sub_subject_and_name_map_data = None
self.df_standard_name_map_data = None
def load_model_data(self):
"""Load model and data only once at startup"""
if self.sentenceTransformerHelper is not None:
print("Model already loaded. Skipping reload.")
return # Không load lại nếu đã có model
print("Loading models and data...")
# Load sentence transformer model
print(f"Loading model {MODEL_NAME} with type {MODEL_TYPE} and half={HALF}")
self.sentenceTransformerHelper = SentenceTransformerHelper(
model_name=MODEL_NAME, model_type=MODEL_TYPE, half=HALF
)
# Create different cached embedding helpers for different types
self.unit_cached_embedding_helper, self.unit_is_loaded = create_cached_embedding_helper_for_type(
self.sentenceTransformerHelper, "unit"
)
self.subject_cached_embedding_helper, self.subject_is_loaded = create_cached_embedding_helper_for_type(
self.sentenceTransformerHelper, "subject"
)
self.sub_subject_cached_embedding_helper, self.sub_subject_is_loaded = (
create_cached_embedding_helper_for_type(
self.sentenceTransformerHelper, "sub_subject"
)
)
self.name_cached_embedding_helper, self.name_is_loaded = create_cached_embedding_helper_for_type(
self.sentenceTransformerHelper, "name"
)
self.abstract_cached_embedding_helper, self.abstract_is_loaded = create_cached_embedding_helper_for_type(
self.sentenceTransformerHelper, "abstract"
)
# Load map data from CSV files (assuming they exist)
self._load_map_data()
print("Models and data loaded successfully")
def _load_map_data(self):
"""Load all mapping data from CSV files"""
try:
import pandas as pd
# Load unit map data
unit_map_file = os.path.join(DATA_DIR, "unitMapData.csv")
if os.path.exists(unit_map_file):
self.df_unit_map_data = pd.read_csv(unit_map_file)
print(f"Loaded unit map data: {len(self.df_unit_map_data)} entries")
# Load subject map data
subject_map_file = os.path.join(DATA_DIR, "subjectMapData.csv")
if os.path.exists(subject_map_file):
self.df_subject_map_data = pd.read_csv(subject_map_file)
print(
f"Loaded subject map data: {len(self.df_subject_map_data)} entries"
)
# Load standard subject map data
standard_subject_map_file = os.path.join(
DATA_DIR, "standardSubjectMapData.csv"
)
if os.path.exists(standard_subject_map_file):
self.df_standard_subject_map_data = pd.read_csv(
standard_subject_map_file
)
print(
f"Loaded standard subject map data: {len(self.df_standard_subject_map_data)} entries"
)
# Load sub subject map data
sub_subject_map_file = os.path.join(DATA_DIR, "subSubjectMapData.csv")
if os.path.exists(sub_subject_map_file):
self.df_sub_subject_map_data = pd.read_csv(sub_subject_map_file)
print(
f"Loaded sub subject map data: {len(self.df_sub_subject_map_data)} entries"
)
# Load name map data
name_map_file = os.path.join(DATA_DIR, "nameMapData.csv")
if os.path.exists(name_map_file):
self.df_name_map_data = pd.read_csv(name_map_file)
print(f"Loaded name map data: {len(self.df_name_map_data)} entries")
# Load sub subject and name map data
sub_subject_and_name_map_file = os.path.join(
DATA_DIR, "subSubjectAndNameMapData.csv"
)
if os.path.exists(sub_subject_and_name_map_file):
self.df_sub_subject_and_name_map_data = pd.read_csv(
sub_subject_and_name_map_file
)
print(
f"Loaded sub subject and name map data: {len(self.df_sub_subject_and_name_map_data)} entries"
)
# Load abstract map data
abstract_map_file = os.path.join(DATA_DIR, "abstractMapData.csv")
if os.path.exists(abstract_map_file):
self.df_abstract_map_data = pd.read_csv(abstract_map_file)
print(
f"Loaded abstract map data: {len(self.df_abstract_map_data)} entries"
)
# Load name and subject map data
name_and_subject_map_file = os.path.join(
DATA_DIR, "nameAndSubjectMapData.csv"
)
if os.path.exists(name_and_subject_map_file):
self.df_name_and_subject_map_data = pd.read_csv(
name_and_subject_map_file
)
print(
f"Loaded name and subject map data: {len(self.df_name_and_subject_map_data)} entries"
)
# Load standard name map data
standard_name_map_file = os.path.join(DATA_DIR, "standardNameMapData.csv")
if os.path.exists(standard_name_map_file):
self.df_standard_name_map_data = pd.read_csv(standard_name_map_file)
print(
f"Loaded standard name map data: {len(self.df_standard_name_map_data)} entries"
)
except Exception as e:
print(f"Error loading map data: {e}")
def save_all_caches(self):
"""Save all cached embeddings"""
try:
if not self.unit_is_loaded:
save_cached_embeddings_by_type(
self.unit_cached_embedding_helper, "unit"
)
if not self.subject_is_loaded:
save_cached_embeddings_by_type(
self.subject_cached_embedding_helper, "subject"
)
if not self.sub_subject_is_loaded:
save_cached_embeddings_by_type(
self.sub_subject_cached_embedding_helper, "sub_subject"
)
if not self.name_is_loaded:
save_cached_embeddings_by_type(
self.name_cached_embedding_helper, "name"
)
if not self.abstract_is_loaded:
save_cached_embeddings_by_type(
self.abstract_cached_embedding_helper, "abstract"
)
# Print cache statistics summary
print("\n" + "=" * 60)
print("EMBEDDING CACHE PERFORMANCE SUMMARY")
print("=" * 60)
total_cache_size = 0
if not self.unit_is_loaded:
unit_size = len(
self.unit_cached_embedding_helper._cached_sentence_embeddings
)
total_cache_size += unit_size
print(f"Unit cache: {unit_size} embeddings")
if not self.subject_is_loaded:
subject_size = len(
self.subject_cached_embedding_helper._cached_sentence_embeddings
)
total_cache_size += subject_size
print(f"Subject cache: {subject_size} embeddings")
if not self.sub_subject_is_loaded:
sub_subject_size = len(
self.sub_subject_cached_embedding_helper._cached_sentence_embeddings
)
total_cache_size += sub_subject_size
print(f"Sub-subject cache: {sub_subject_size} embeddings")
if not self.name_is_loaded:
name_size = len(
self.name_cached_embedding_helper._cached_sentence_embeddings
)
total_cache_size += name_size
print(f"Name cache: {name_size} embeddings")
if not self.abstract_is_loaded:
abstract_size = len(
self.abstract_cached_embedding_helper._cached_sentence_embeddings
)
total_cache_size += abstract_size
print(f"Abstract cache: {abstract_size} embeddings")
print(f"Total cached embeddings: {total_cache_size}")
print("=" * 60)
except Exception as e:
print(f"Error saving caches: {e}")
# Global instance (singleton)
sentence_transformer_service = SentenceTransformerService()