DeeeTeeee01 commited on
Commit
e27972a
·
1 Parent(s): afa25e8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +74 -71
app.py CHANGED
@@ -1,74 +1,3 @@
1
- # import streamlit as st
2
- # import transformers
3
- # import torch
4
-
5
- # # Load the model and tokenizer
6
- # model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee")
7
- # tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee")
8
-
9
- # # Define the function for sentiment analysis
10
- # @st.cache_resource
11
- # def predict_sentiment(text):
12
- # # Load the pipeline.
13
- # pipeline = transformers.pipeline("sentiment-analysis")
14
-
15
- # # Predict the sentiment.
16
- # prediction = pipeline(text)
17
- # sentiment = prediction[0]["label"]
18
- # score = prediction[0]["score"]
19
-
20
- # return sentiment, score
21
-
22
- # # Setting the page configurations
23
- # st.set_page_config(
24
- # page_title="Sentiment Analysis App",
25
- # page_icon=":smile:",
26
- # layout="wide",
27
- # initial_sidebar_state="auto",
28
- # )
29
-
30
- # # Add description and title
31
- # st.write("""
32
- # # Predict if your text is Positive, Negative or Nuetral ...
33
- # Please type your text and press ENTER key to know if your text is positive, negative, or neutral sentiment!
34
- # """)
35
-
36
-
37
- # # Add image
38
- # image = st.image("sentiment.jpeg", width=400)
39
-
40
- # # Get user input
41
- # text = st.text_input("Type here:")
42
-
43
- # # Define the CSS style for the app
44
- # st.markdown(
45
- # """
46
- # <style>
47
- # body {
48
- # background-color: #f5f5f5;
49
- # }
50
- # h1 {
51
- # color: #4e79a7;
52
- # }
53
- # </style>
54
- # """,
55
- # unsafe_allow_html=True
56
- # )
57
-
58
- # # Show sentiment output
59
- # if text:
60
- # sentiment, score = predict_sentiment(text)
61
- # if sentiment == "Positive":
62
- # st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
63
- # elif sentiment == "Negative":
64
- # st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
65
- # else:
66
- # st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
67
-
68
-
69
-
70
-
71
-
72
  import streamlit as st
73
  import transformers
74
  import torch
@@ -141,3 +70,77 @@ if predict_button and text:
141
  st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
142
 
143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
  import transformers
3
  import torch
 
70
  st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
71
 
72
 
73
+
74
+
75
+ # import streamlit as st
76
+ # import transformers
77
+ # import torch
78
+
79
+ # # Load the model and tokenizer
80
+ # model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee")
81
+ # tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee")
82
+
83
+ # # Define the function for sentiment analysis
84
+ # @st.cache_resource
85
+ # def predict_sentiment(text):
86
+ # # Load the pipeline.
87
+ # pipeline = transformers.pipeline("sentiment-analysis")
88
+
89
+ # # Predict the sentiment.
90
+ # prediction = pipeline(text)
91
+ # sentiment = prediction[0]["label"]
92
+ # score = prediction[0]["score"]
93
+
94
+ # return sentiment, score
95
+
96
+ # # Setting the page configurations
97
+ # st.set_page_config(
98
+ # page_title="Sentiment Analysis App",
99
+ # page_icon=":smile:",
100
+ # layout="wide",
101
+ # initial_sidebar_state="auto",
102
+ # )
103
+
104
+ # # Add description and title
105
+ # st.write("""
106
+ # # Predict if your text is Positive, Negative or Nuetral ...
107
+ # Please type your text and press ENTER key to know if your text is positive, negative, or neutral sentiment!
108
+ # """)
109
+
110
+
111
+ # # Add image
112
+ # image = st.image("sentiment.jpeg", width=400)
113
+
114
+ # # Get user input
115
+ # text = st.text_input("Type here:")
116
+
117
+ # # Define the CSS style for the app
118
+ # st.markdown(
119
+ # """
120
+ # <style>
121
+ # body {
122
+ # background-color: #f5f5f5;
123
+ # }
124
+ # h1 {
125
+ # color: #4e79a7;
126
+ # }
127
+ # </style>
128
+ # """,
129
+ # unsafe_allow_html=True
130
+ # )
131
+
132
+ # # Show sentiment output
133
+ # if text:
134
+ # sentiment, score = predict_sentiment(text)
135
+ # if sentiment == "Positive":
136
+ # st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
137
+ # elif sentiment == "Negative":
138
+ # st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
139
+ # else:
140
+ # st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
141
+
142
+
143
+
144
+
145
+
146
+