Spaces:
Runtime error
Runtime error
Commit
·
ccbd4ac
1
Parent(s):
720ebfc
Update app.py
Browse files
app.py
CHANGED
@@ -65,76 +65,9 @@
|
|
65 |
# else:
|
66 |
# st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
67 |
|
68 |
-
import streamlit as st
|
69 |
-
import transformers
|
70 |
-
import torch
|
71 |
|
72 |
-
# Load the model and tokenizer
|
73 |
-
model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
|
74 |
-
tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
|
75 |
-
|
76 |
-
# Define the function for sentiment analysis
|
77 |
-
@st.cache_resource
|
78 |
-
def predict_sentiment(text):
|
79 |
-
# Load the pipeline
|
80 |
-
pipeline = transformers.pipeline("sentiment-analysis")
|
81 |
-
|
82 |
-
|
83 |
-
# Predict the sentiment
|
84 |
-
prediction = pipeline(text)
|
85 |
-
sentiment = prediction[0]["label"]
|
86 |
-
score = prediction[0]["score"]
|
87 |
-
|
88 |
-
return sentiment, score
|
89 |
-
|
90 |
-
# Setting the page configurations
|
91 |
-
st.set_page_config(
|
92 |
-
page_title="Sentiment Analysis App",
|
93 |
-
page_icon=":smile:",
|
94 |
-
layout="wide",
|
95 |
-
initial_sidebar_state="auto",
|
96 |
-
)
|
97 |
-
|
98 |
-
# Add description and title
|
99 |
-
st.write("""
|
100 |
-
# Predict if your text is Positive, Negative or Neutral ...
|
101 |
-
Please type your text and click the Predict button to know if your text has a positive, negative or neutral sentiment!
|
102 |
-
""")
|
103 |
-
|
104 |
-
# Add image
|
105 |
-
image = st.image("sentiment.jpeg", width=400)
|
106 |
-
|
107 |
-
# Get user input
|
108 |
-
text = st.text_input("Type here:")
|
109 |
-
|
110 |
-
# Add Predict button
|
111 |
-
predict_button = st.button("Predict")
|
112 |
|
113 |
-
# Define the CSS style for the app
|
114 |
-
st.markdown(
|
115 |
-
"""
|
116 |
-
<style>
|
117 |
-
body {
|
118 |
-
background: linear-gradient(to right, #4e79a7, #86a8e7);
|
119 |
-
color: lightblue;
|
120 |
-
}
|
121 |
-
h1 {
|
122 |
-
color: #4e79a7;
|
123 |
-
}
|
124 |
-
</style>
|
125 |
-
""",
|
126 |
-
unsafe_allow_html=True
|
127 |
-
)
|
128 |
|
129 |
-
# Show sentiment output
|
130 |
-
if predict_button and text:
|
131 |
-
sentiment, score = predict_sentiment(text)
|
132 |
-
if sentiment == "Positive":
|
133 |
-
st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
134 |
-
elif sentiment == "Negative":
|
135 |
-
st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
136 |
-
else:
|
137 |
-
st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
138 |
|
139 |
# import streamlit as st
|
140 |
# import transformers
|
@@ -145,15 +78,16 @@ if predict_button and text:
|
|
145 |
# tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
|
146 |
|
147 |
# # Define the function for sentiment analysis
|
148 |
-
# @st.
|
149 |
# def predict_sentiment(text):
|
150 |
# # Load the pipeline
|
151 |
-
# pipeline = transformers.pipeline("sentiment-analysis"
|
152 |
|
|
|
153 |
# # Predict the sentiment
|
154 |
-
# prediction = pipeline(text)
|
155 |
-
# sentiment = prediction["label"]
|
156 |
-
# score = prediction["score"]
|
157 |
|
158 |
# return sentiment, score
|
159 |
|
@@ -167,27 +101,19 @@ if predict_button and text:
|
|
167 |
|
168 |
# # Add description and title
|
169 |
# st.write("""
|
170 |
-
# # Predict if your text is Positive, Negative
|
171 |
-
# Please type your text and click the Predict button to know
|
172 |
# """)
|
173 |
|
|
|
|
|
|
|
174 |
# # Get user input
|
175 |
# text = st.text_input("Type here:")
|
176 |
|
177 |
# # Add Predict button
|
178 |
# predict_button = st.button("Predict")
|
179 |
|
180 |
-
# # Show sentiment output
|
181 |
-
# if predict_button and text:
|
182 |
-
# sentiment, score = predict_sentiment(text)
|
183 |
-
# st.write(f"The sentiment is {sentiment} with a score of {score*100:.2f}% for each category.")
|
184 |
-
|
185 |
-
# # Display individual percentages
|
186 |
-
# st.write("Sentiment Breakdown:")
|
187 |
-
# st.write(f"- Negative: {score['NEGATIVE']*100:.2f}%")
|
188 |
-
# st.write(f"- Positive: {score['POSITIVE']*100:.2f}%")
|
189 |
-
# st.write(f"- Neutral: {score['NEUTRAL']*100:.2f}%")
|
190 |
-
|
191 |
# # Define the CSS style for the app
|
192 |
# st.markdown(
|
193 |
# """
|
@@ -204,3 +130,81 @@ if predict_button and text:
|
|
204 |
# unsafe_allow_html=True
|
205 |
# )
|
206 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
# else:
|
66 |
# st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
67 |
|
|
|
|
|
|
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
# import streamlit as st
|
73 |
# import transformers
|
|
|
78 |
# tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
|
79 |
|
80 |
# # Define the function for sentiment analysis
|
81 |
+
# @st.cache_resource
|
82 |
# def predict_sentiment(text):
|
83 |
# # Load the pipeline
|
84 |
+
# pipeline = transformers.pipeline("sentiment-analysis")
|
85 |
|
86 |
+
|
87 |
# # Predict the sentiment
|
88 |
+
# prediction = pipeline(text)
|
89 |
+
# sentiment = prediction[0]["label"]
|
90 |
+
# score = prediction[0]["score"]
|
91 |
|
92 |
# return sentiment, score
|
93 |
|
|
|
101 |
|
102 |
# # Add description and title
|
103 |
# st.write("""
|
104 |
+
# # Predict if your text is Positive, Negative or Neutral ...
|
105 |
+
# Please type your text and click the Predict button to know if your text has a positive, negative or neutral sentiment!
|
106 |
# """)
|
107 |
|
108 |
+
# # Add image
|
109 |
+
# image = st.image("sentiment.jpeg", width=400)
|
110 |
+
|
111 |
# # Get user input
|
112 |
# text = st.text_input("Type here:")
|
113 |
|
114 |
# # Add Predict button
|
115 |
# predict_button = st.button("Predict")
|
116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
# # Define the CSS style for the app
|
118 |
# st.markdown(
|
119 |
# """
|
|
|
130 |
# unsafe_allow_html=True
|
131 |
# )
|
132 |
|
133 |
+
# # Show sentiment output
|
134 |
+
# if predict_button and text:
|
135 |
+
# sentiment, score = predict_sentiment(text)
|
136 |
+
# if sentiment == "Positive":
|
137 |
+
# st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
138 |
+
# elif sentiment == "Negative":
|
139 |
+
# st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
140 |
+
# else:
|
141 |
+
# st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
142 |
+
|
143 |
+
import streamlit as st
|
144 |
+
import transformers
|
145 |
+
import torch
|
146 |
+
|
147 |
+
# Load the model and tokenizer
|
148 |
+
model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
|
149 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
|
150 |
+
|
151 |
+
# Define the function for sentiment analysis
|
152 |
+
@st.cache
|
153 |
+
def predict_sentiment(text):
|
154 |
+
# Load the pipeline
|
155 |
+
pipeline = transformers.pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
156 |
+
|
157 |
+
# Predict the sentiment
|
158 |
+
prediction = pipeline(text)[0]
|
159 |
+
sentiment = prediction["label"]
|
160 |
+
score = prediction["score"]
|
161 |
+
|
162 |
+
return sentiment, score
|
163 |
+
|
164 |
+
# Setting the page configurations
|
165 |
+
st.set_page_config(
|
166 |
+
page_title="Sentiment Analysis App",
|
167 |
+
page_icon=":smile:",
|
168 |
+
layout="wide",
|
169 |
+
initial_sidebar_state="auto",
|
170 |
+
)
|
171 |
+
|
172 |
+
# Add description and title
|
173 |
+
st.write("""
|
174 |
+
# Predict if your text is Positive, Negative, or Neutral ...
|
175 |
+
Please type your text and click the Predict button to know the sentiment!
|
176 |
+
""")
|
177 |
+
|
178 |
+
# Get user input
|
179 |
+
text = st.text_input("Type here:")
|
180 |
+
|
181 |
+
# Add Predict button
|
182 |
+
predict_button = st.button("Predict")
|
183 |
+
|
184 |
+
# Show sentiment output
|
185 |
+
if predict_button and text:
|
186 |
+
sentiment, score = predict_sentiment(text)
|
187 |
+
st.write(f"The sentiment is {sentiment} with a score of {score*100:.2f}% for each category.")
|
188 |
+
|
189 |
+
# Display individual percentages
|
190 |
+
st.write("Sentiment Breakdown:")
|
191 |
+
st.write(f"- Negative: {score['NEGATIVE']*100:.2f}%")
|
192 |
+
st.write(f"- Positive: {score['POSITIVE']*100:.2f}%")
|
193 |
+
st.write(f"- Neutral: {score['NEUTRAL']*100:.2f}%")
|
194 |
+
|
195 |
+
# Define the CSS style for the app
|
196 |
+
st.markdown(
|
197 |
+
"""
|
198 |
+
<style>
|
199 |
+
body {
|
200 |
+
background: linear-gradient(to right, #4e79a7, #86a8e7);
|
201 |
+
color: lightblue;
|
202 |
+
}
|
203 |
+
h1 {
|
204 |
+
color: #4e79a7;
|
205 |
+
}
|
206 |
+
</style>
|
207 |
+
""",
|
208 |
+
unsafe_allow_html=True
|
209 |
+
)
|
210 |
+
|