DeeeTeeee01 commited on
Commit
aa752b7
·
1 Parent(s): 585c098

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -12
app.py CHANGED
@@ -143,20 +143,11 @@
143
  import streamlit as st
144
  import transformers
145
  import torch
146
- import tokenizers # Import tokenizers explicitly
147
 
148
  # Load the model and tokenizer
149
  model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
150
  tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
151
 
152
- # Define the custom hash function for tokenizers.Tokenizer (Unused in this version)
153
- def tokenizer_hash_func(tokenizer):
154
- return tokenizer.__str__()
155
-
156
- # Define the custom hash function for tokenizers.AddedToken (Unused in this version)
157
- def added_token_hash_func(token):
158
- return token.__str__()
159
-
160
  # Define the function for sentiment analysis without caching
161
  def predict_sentiment(text):
162
  # Load the pipeline
@@ -196,9 +187,9 @@ if predict_button and text:
196
 
197
  # Display individual percentages
198
  st.write("Sentiment Breakdown:")
199
- st.write(f"- Negative: {score['LABEL_0']*100:.2f}%")
200
- st.write(f"- Positive: {score['LABEL_1']*100:.2f}%")
201
- st.write(f"- Neutral: {score['LABEL_2']*100:.2f}%")
202
 
203
  # Define the CSS style for the app
204
  st.markdown(
 
143
  import streamlit as st
144
  import transformers
145
  import torch
 
146
 
147
  # Load the model and tokenizer
148
  model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
149
  tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
150
 
 
 
 
 
 
 
 
 
151
  # Define the function for sentiment analysis without caching
152
  def predict_sentiment(text):
153
  # Load the pipeline
 
187
 
188
  # Display individual percentages
189
  st.write("Sentiment Breakdown:")
190
+ st.write(f"- Negative: {score[0]*100:.2f}%")
191
+ st.write(f"- Positive: {score[1]*100:.2f}%")
192
+ st.write(f"- Neutral: {score[2]*100:.2f}%")
193
 
194
  # Define the CSS style for the app
195
  st.markdown(