Spaces:
Runtime error
Runtime error
Commit
·
44caf9f
1
Parent(s):
55c11e6
Update app.py
Browse files
app.py
CHANGED
@@ -69,98 +69,27 @@
|
|
69 |
|
70 |
|
71 |
|
72 |
-
# import streamlit as st
|
73 |
-
# import transformers
|
74 |
-
# import torch
|
75 |
-
|
76 |
-
# # Load the model and tokenizer
|
77 |
-
# model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
|
78 |
-
# tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
|
79 |
-
|
80 |
-
# # Define the function for sentiment analysis
|
81 |
-
# @st.cache_resource
|
82 |
-
# def predict_sentiment(text):
|
83 |
-
# # Load the pipeline
|
84 |
-
# pipeline = transformers.pipeline("sentiment-analysis")
|
85 |
-
|
86 |
-
|
87 |
-
# # Predict the sentiment
|
88 |
-
# prediction = pipeline(text)
|
89 |
-
# sentiment = prediction[0]["label"]
|
90 |
-
# score = prediction[0]["score"]
|
91 |
-
|
92 |
-
# return sentiment, score
|
93 |
-
|
94 |
-
# # Setting the page configurations
|
95 |
-
# st.set_page_config(
|
96 |
-
# page_title="Sentiment Analysis App",
|
97 |
-
# page_icon=":smile:",
|
98 |
-
# layout="wide",
|
99 |
-
# initial_sidebar_state="auto",
|
100 |
-
# )
|
101 |
-
|
102 |
-
# # Add description and title
|
103 |
-
# st.write("""
|
104 |
-
# # Predict if your text is Positive, Negative or Neutral ...
|
105 |
-
# Please type your text and click the Predict button to know if your text has a positive, negative or neutral sentiment!
|
106 |
-
# """)
|
107 |
-
|
108 |
-
# # Add image
|
109 |
-
# image = st.image("sentiment.jpeg", width=400)
|
110 |
-
|
111 |
-
# # Get user input
|
112 |
-
# text = st.text_input("Type here:")
|
113 |
-
|
114 |
-
# # Add Predict button
|
115 |
-
# predict_button = st.button("Predict")
|
116 |
-
|
117 |
-
# # Define the CSS style for the app
|
118 |
-
# st.markdown(
|
119 |
-
# """
|
120 |
-
# <style>
|
121 |
-
# body {
|
122 |
-
# background: linear-gradient(to right, #4e79a7, #86a8e7);
|
123 |
-
# color: lightblue;
|
124 |
-
# }
|
125 |
-
# h1 {
|
126 |
-
# color: #4e79a7;
|
127 |
-
# }
|
128 |
-
# </style>
|
129 |
-
# """,
|
130 |
-
# unsafe_allow_html=True
|
131 |
-
# )
|
132 |
-
|
133 |
-
# # Show sentiment output
|
134 |
-
# if predict_button and text:
|
135 |
-
# sentiment, score = predict_sentiment(text)
|
136 |
-
# if sentiment == "Positive":
|
137 |
-
# st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
138 |
-
# elif sentiment == "Negative":
|
139 |
-
# st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
140 |
-
# else:
|
141 |
-
# st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
142 |
-
|
143 |
import streamlit as st
|
144 |
import transformers
|
|
|
145 |
|
146 |
# Load the model and tokenizer
|
147 |
model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
|
148 |
tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
|
149 |
|
150 |
-
# Define the function for sentiment analysis
|
|
|
151 |
def predict_sentiment(text):
|
152 |
# Load the pipeline
|
153 |
-
pipeline = transformers.pipeline("sentiment-analysis"
|
154 |
|
|
|
155 |
# Predict the sentiment
|
156 |
-
prediction = pipeline(text)
|
157 |
-
sentiment = prediction["label"]
|
158 |
-
score = prediction["score"]
|
159 |
|
160 |
-
|
161 |
-
scores_dict = {label: score * 100 for label, score in zip(prediction["labels"], prediction["scores"])}
|
162 |
-
|
163 |
-
return sentiment, scores_dict
|
164 |
|
165 |
# Setting the page configurations
|
166 |
st.set_page_config(
|
@@ -172,26 +101,19 @@ st.set_page_config(
|
|
172 |
|
173 |
# Add description and title
|
174 |
st.write("""
|
175 |
-
# Predict if your text is Positive, Negative
|
176 |
-
Please type your text and click the Predict button to know
|
177 |
""")
|
178 |
|
|
|
|
|
|
|
179 |
# Get user input
|
180 |
text = st.text_input("Type here:")
|
181 |
|
182 |
# Add Predict button
|
183 |
predict_button = st.button("Predict")
|
184 |
|
185 |
-
# Show sentiment output
|
186 |
-
if predict_button and text:
|
187 |
-
sentiment, scores_dict = predict_sentiment(text)
|
188 |
-
st.write(f"The sentiment is {sentiment} with a score of {scores_dict[sentiment]:.2f}% for each category.")
|
189 |
-
|
190 |
-
# Display individual percentages
|
191 |
-
st.write("Sentiment Breakdown:")
|
192 |
-
for label, score in scores_dict.items():
|
193 |
-
st.write(f"- {label}: {score:.2f}%")
|
194 |
-
|
195 |
# Define the CSS style for the app
|
196 |
st.markdown(
|
197 |
"""
|
@@ -208,3 +130,14 @@ h1 {
|
|
208 |
unsafe_allow_html=True
|
209 |
)
|
210 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
import streamlit as st
|
73 |
import transformers
|
74 |
+
import torch
|
75 |
|
76 |
# Load the model and tokenizer
|
77 |
model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
|
78 |
tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/mytest_trainer_roberta-base")
|
79 |
|
80 |
+
# Define the function for sentiment analysis
|
81 |
+
@st.cache_resource
|
82 |
def predict_sentiment(text):
|
83 |
# Load the pipeline
|
84 |
+
pipeline = transformers.pipeline("sentiment-analysis")
|
85 |
|
86 |
+
|
87 |
# Predict the sentiment
|
88 |
+
prediction = pipeline(text)
|
89 |
+
sentiment = prediction[0]["label"]
|
90 |
+
score = prediction[0]["score"]
|
91 |
|
92 |
+
return sentiment, score
|
|
|
|
|
|
|
93 |
|
94 |
# Setting the page configurations
|
95 |
st.set_page_config(
|
|
|
101 |
|
102 |
# Add description and title
|
103 |
st.write("""
|
104 |
+
# Predict if your text is Positive, Negative or Neutral ...
|
105 |
+
Please type your text and click the Predict button to know if your text has a positive, negative or neutral sentiment!
|
106 |
""")
|
107 |
|
108 |
+
# Add image
|
109 |
+
image = st.image("sentiment.jpeg", width=400)
|
110 |
+
|
111 |
# Get user input
|
112 |
text = st.text_input("Type here:")
|
113 |
|
114 |
# Add Predict button
|
115 |
predict_button = st.button("Predict")
|
116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
# Define the CSS style for the app
|
118 |
st.markdown(
|
119 |
"""
|
|
|
130 |
unsafe_allow_html=True
|
131 |
)
|
132 |
|
133 |
+
# Show sentiment output
|
134 |
+
if predict_button and text:
|
135 |
+
sentiment, score = predict_sentiment(text)
|
136 |
+
if sentiment == "Positive":
|
137 |
+
st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
138 |
+
elif sentiment == "Negative":
|
139 |
+
st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
140 |
+
else:
|
141 |
+
st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
142 |
+
|
143 |
+
|