Spaces:
Running
on
Zero
Running
on
Zero
Upload 3 files
Browse filesupdate video processor function, now can know the time line of objects and fixed error issues
- app.py +166 -63
- ui_manager.py +212 -141
- video_processor.py +500 -295
app.py
CHANGED
@@ -8,6 +8,8 @@ import cv2
|
|
8 |
from PIL import Image
|
9 |
import tempfile
|
10 |
import uuid
|
|
|
|
|
11 |
import spaces
|
12 |
|
13 |
from detection_model import DetectionModel
|
@@ -27,7 +29,7 @@ ui_manager = None
|
|
27 |
def initialize_processors():
|
28 |
"""
|
29 |
Initialize the image and video processors with LLM support.
|
30 |
-
|
31 |
Returns:
|
32 |
bool: True if initialization was successful, False otherwise
|
33 |
"""
|
@@ -49,8 +51,9 @@ def initialize_processors():
|
|
49 |
else:
|
50 |
print("WARNING: scene_analyzer attribute not found in image_processor")
|
51 |
|
52 |
-
|
53 |
-
|
|
|
54 |
return True
|
55 |
|
56 |
except Exception as e:
|
@@ -62,7 +65,7 @@ def initialize_processors():
|
|
62 |
try:
|
63 |
print("Attempting fallback initialization without LLM...")
|
64 |
image_processor = ImageProcessor(use_llm=False, enable_places365=False)
|
65 |
-
video_processor = VideoProcessor(
|
66 |
print("Fallback processors initialized successfully without LLM and Places365")
|
67 |
return True
|
68 |
|
@@ -77,25 +80,25 @@ def initialize_processors():
|
|
77 |
def initialize_ui_manager():
|
78 |
"""
|
79 |
Initialize the UI manager and set up references to processors.
|
80 |
-
|
81 |
Returns:
|
82 |
UIManager: Initialized UI manager instance
|
83 |
"""
|
84 |
global ui_manager, image_processor
|
85 |
-
|
86 |
ui_manager = UIManager()
|
87 |
-
|
88 |
# Set image processor reference for dynamic class retrieval
|
89 |
if image_processor:
|
90 |
ui_manager.set_image_processor(image_processor)
|
91 |
-
|
92 |
return ui_manager
|
93 |
|
94 |
@spaces.GPU(duration=180)
|
95 |
def handle_image_upload(image, model_name, confidence_threshold, filter_classes=None, use_llm=True, enable_landmark=True):
|
96 |
"""
|
97 |
Processes a single uploaded image.
|
98 |
-
|
99 |
Args:
|
100 |
image: PIL Image object
|
101 |
model_name: Name of the YOLO model to use
|
@@ -103,10 +106,10 @@ def handle_image_upload(image, model_name, confidence_threshold, filter_classes=
|
|
103 |
filter_classes: List of class names/IDs to filter
|
104 |
use_llm: Whether to use LLM for enhanced descriptions
|
105 |
enable_landmark: Whether to enable landmark detection
|
106 |
-
|
107 |
Returns:
|
108 |
-
Tuple: (result_image, result_text, formatted_stats, plot_figure,
|
109 |
-
scene_description_html, original_desc_html, activities_list_data,
|
110 |
safety_data, zones, lighting)
|
111 |
"""
|
112 |
# Enhanced safety check for image_processor
|
@@ -140,7 +143,7 @@ def handle_image_upload(image, model_name, confidence_threshold, filter_classes=
|
|
140 |
|
141 |
print(f"DIAGNOSTIC: Image upload handled with enable_landmark={enable_landmark}, use_llm={use_llm}")
|
142 |
print(f"Processing image with model: {model_name}, confidence: {confidence_threshold}, use_llm: {use_llm}, enable_landmark: {enable_landmark}")
|
143 |
-
|
144 |
try:
|
145 |
image_processor.use_llm = use_llm
|
146 |
|
@@ -366,7 +369,7 @@ def handle_image_upload(image, model_name, confidence_threshold, filter_classes=
|
|
366 |
</div>
|
367 |
'''
|
368 |
|
369 |
-
# 原始描述只在使用 LLM
|
370 |
original_desc_visibility = "block" if use_llm and enhanced_description else "none"
|
371 |
original_desc_html = f'''
|
372 |
<div id="original_scene_analysis_accordion" style="display: {original_desc_visibility};">
|
@@ -483,95 +486,195 @@ def download_video_from_url(video_url, max_duration_minutes=10):
|
|
483 |
print(f"Error downloading video: {e}\n{error_details}")
|
484 |
return None, f"Error downloading video: {str(e)}"
|
485 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
486 |
|
487 |
@spaces.GPU
|
488 |
-
def handle_video_upload(video_input, video_url, input_type, model_name,
|
|
|
489 |
"""
|
490 |
-
|
491 |
|
492 |
Args:
|
493 |
-
video_input:
|
494 |
-
video_url:
|
495 |
-
input_type:
|
496 |
-
model_name:
|
497 |
-
confidence_threshold:
|
498 |
-
process_interval:
|
499 |
|
500 |
Returns:
|
501 |
Tuple: (output_video_path, summary_html, formatted_stats)
|
502 |
"""
|
503 |
-
|
504 |
-
|
|
|
|
|
505 |
|
506 |
-
|
|
|
|
|
507 |
if input_type == "upload" and video_input:
|
508 |
-
print(f"Processing uploaded video file")
|
509 |
video_path = video_input
|
|
|
510 |
elif input_type == "url" and video_url:
|
511 |
print(f"Processing video from URL: {video_url}")
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
error_html
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
|
|
|
|
|
|
|
|
522 |
try:
|
523 |
-
|
524 |
-
output_video_path, summary_text, stats_dict = video_processor.process_video_file(
|
525 |
video_path=video_path,
|
526 |
model_name=model_name,
|
527 |
confidence_threshold=confidence_threshold,
|
528 |
-
process_interval=int(process_interval)
|
529 |
)
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
541 |
|
542 |
except Exception as e:
|
543 |
print(f"Error in handle_video_upload: {e}")
|
544 |
-
|
545 |
-
error_msg = f"
|
546 |
error_html = f"<div class='video-summary-content-wrapper'><pre>{error_msg}</pre></div>"
|
547 |
return None, error_html, {"error": str(e)}
|
548 |
|
549 |
-
|
550 |
def main():
|
551 |
-
"""
|
552 |
-
Main function to initialize processors and launch the Gradio interface.
|
553 |
-
"""
|
554 |
global ui_manager
|
555 |
|
556 |
-
|
|
|
557 |
print("Initializing processors...")
|
558 |
initialization_success = initialize_processors()
|
559 |
if not initialization_success:
|
560 |
-
print("
|
561 |
return
|
562 |
-
|
563 |
-
# Initialize UI manager
|
564 |
print("Initializing UI manager...")
|
565 |
ui_manager = initialize_ui_manager()
|
566 |
-
|
567 |
-
# Create and launch the Gradio interface
|
568 |
print("Creating Gradio interface...")
|
569 |
demo_interface = ui_manager.create_interface(
|
570 |
handle_image_upload_fn=handle_image_upload,
|
571 |
handle_video_upload_fn=handle_video_upload,
|
572 |
download_video_from_url_fn=download_video_from_url
|
573 |
)
|
574 |
-
|
575 |
print("Launching application...")
|
576 |
demo_interface.launch(debug=True)
|
577 |
|
|
|
8 |
from PIL import Image
|
9 |
import tempfile
|
10 |
import uuid
|
11 |
+
import time
|
12 |
+
import traceback
|
13 |
import spaces
|
14 |
|
15 |
from detection_model import DetectionModel
|
|
|
29 |
def initialize_processors():
|
30 |
"""
|
31 |
Initialize the image and video processors with LLM support.
|
32 |
+
|
33 |
Returns:
|
34 |
bool: True if initialization was successful, False otherwise
|
35 |
"""
|
|
|
51 |
else:
|
52 |
print("WARNING: scene_analyzer attribute not found in image_processor")
|
53 |
|
54 |
+
# 初始化獨立的VideoProcessor
|
55 |
+
video_processor = VideoProcessor()
|
56 |
+
print("VideoProcessor initialized successfully as independent module")
|
57 |
return True
|
58 |
|
59 |
except Exception as e:
|
|
|
65 |
try:
|
66 |
print("Attempting fallback initialization without LLM...")
|
67 |
image_processor = ImageProcessor(use_llm=False, enable_places365=False)
|
68 |
+
video_processor = VideoProcessor()
|
69 |
print("Fallback processors initialized successfully without LLM and Places365")
|
70 |
return True
|
71 |
|
|
|
80 |
def initialize_ui_manager():
|
81 |
"""
|
82 |
Initialize the UI manager and set up references to processors.
|
83 |
+
|
84 |
Returns:
|
85 |
UIManager: Initialized UI manager instance
|
86 |
"""
|
87 |
global ui_manager, image_processor
|
88 |
+
|
89 |
ui_manager = UIManager()
|
90 |
+
|
91 |
# Set image processor reference for dynamic class retrieval
|
92 |
if image_processor:
|
93 |
ui_manager.set_image_processor(image_processor)
|
94 |
+
|
95 |
return ui_manager
|
96 |
|
97 |
@spaces.GPU(duration=180)
|
98 |
def handle_image_upload(image, model_name, confidence_threshold, filter_classes=None, use_llm=True, enable_landmark=True):
|
99 |
"""
|
100 |
Processes a single uploaded image.
|
101 |
+
|
102 |
Args:
|
103 |
image: PIL Image object
|
104 |
model_name: Name of the YOLO model to use
|
|
|
106 |
filter_classes: List of class names/IDs to filter
|
107 |
use_llm: Whether to use LLM for enhanced descriptions
|
108 |
enable_landmark: Whether to enable landmark detection
|
109 |
+
|
110 |
Returns:
|
111 |
+
Tuple: (result_image, result_text, formatted_stats, plot_figure,
|
112 |
+
scene_description_html, original_desc_html, activities_list_data,
|
113 |
safety_data, zones, lighting)
|
114 |
"""
|
115 |
# Enhanced safety check for image_processor
|
|
|
143 |
|
144 |
print(f"DIAGNOSTIC: Image upload handled with enable_landmark={enable_landmark}, use_llm={use_llm}")
|
145 |
print(f"Processing image with model: {model_name}, confidence: {confidence_threshold}, use_llm: {use_llm}, enable_landmark: {enable_landmark}")
|
146 |
+
|
147 |
try:
|
148 |
image_processor.use_llm = use_llm
|
149 |
|
|
|
369 |
</div>
|
370 |
'''
|
371 |
|
372 |
+
# 原始描述只在使用 LLM 且有增強敘述時會在折疊區顯示
|
373 |
original_desc_visibility = "block" if use_llm and enhanced_description else "none"
|
374 |
original_desc_html = f'''
|
375 |
<div id="original_scene_analysis_accordion" style="display: {original_desc_visibility};">
|
|
|
486 |
print(f"Error downloading video: {e}\n{error_details}")
|
487 |
return None, f"Error downloading video: {str(e)}"
|
488 |
|
489 |
+
def generate_basic_video_summary(analysis_results: Dict) -> str:
|
490 |
+
"""
|
491 |
+
生成基本的視頻統計摘要
|
492 |
+
|
493 |
+
Args:
|
494 |
+
analysis_results (Dict): 新的分析結果結構
|
495 |
+
|
496 |
+
Returns:
|
497 |
+
str: 詳細的統計摘要
|
498 |
+
"""
|
499 |
+
summary_lines = ["=== Video Analysis Summary ===", ""]
|
500 |
+
|
501 |
+
# process info
|
502 |
+
processing_info = analysis_results.get("processing_info", {})
|
503 |
+
duration = processing_info.get("video_duration_seconds", 0)
|
504 |
+
total_frames = processing_info.get("total_frames", 0)
|
505 |
+
analyzed_frames = processing_info.get("frames_analyzed", 0)
|
506 |
+
|
507 |
+
summary_lines.extend([
|
508 |
+
f"Video Duration: {duration:.1f} seconds ({total_frames} total frames)",
|
509 |
+
f"Frames Analyzed: {analyzed_frames} frames (every {processing_info.get('processing_interval', 1)} frames)",
|
510 |
+
""
|
511 |
+
])
|
512 |
+
|
513 |
+
# object detected summary
|
514 |
+
object_summary = analysis_results.get("object_summary", {})
|
515 |
+
total_objects = object_summary.get("total_unique_objects_detected", 0)
|
516 |
+
object_types = object_summary.get("object_types_found", 0)
|
517 |
+
|
518 |
+
summary_lines.extend([
|
519 |
+
f"Objects Detected: {total_objects} total objects across {object_types} categories",
|
520 |
+
""
|
521 |
+
])
|
522 |
+
|
523 |
+
# detailed counting number
|
524 |
+
detailed_counts = object_summary.get("detailed_counts", {})
|
525 |
+
if detailed_counts:
|
526 |
+
summary_lines.extend([
|
527 |
+
"Object Breakdown:",
|
528 |
+
*[f" • {count} {name}(s)" for name, count in detailed_counts.items()],
|
529 |
+
""
|
530 |
+
])
|
531 |
+
|
532 |
+
# 實用分析摘要
|
533 |
+
practical_analytics = analysis_results.get("practical_analytics", {})
|
534 |
+
|
535 |
+
# 物體密度分析
|
536 |
+
density_info = practical_analytics.get("object_density", {})
|
537 |
+
if density_info:
|
538 |
+
objects_per_min = density_info.get("objects_per_minute", 0)
|
539 |
+
peak_periods = density_info.get("peak_activity_periods", [])
|
540 |
+
summary_lines.extend([
|
541 |
+
f"Activity Level: {objects_per_min:.1f} objects per minute",
|
542 |
+
f"Peak Activity Periods: {len(peak_periods)} identified",
|
543 |
+
""
|
544 |
+
])
|
545 |
+
|
546 |
+
# 場景適合性
|
547 |
+
scene_info = practical_analytics.get("scene_appropriateness", {})
|
548 |
+
if scene_info.get("scene_detected", False):
|
549 |
+
scene_name = scene_info.get("scene_name", "unknown")
|
550 |
+
appropriateness = scene_info.get("appropriateness_score", 0)
|
551 |
+
summary_lines.extend([
|
552 |
+
f"Scene Type: {scene_name}",
|
553 |
+
f"Object-Scene Compatibility: {appropriateness:.1%}",
|
554 |
+
""
|
555 |
+
])
|
556 |
+
|
557 |
+
# 品質指標
|
558 |
+
quality_info = practical_analytics.get("quality_metrics", {})
|
559 |
+
if quality_info:
|
560 |
+
quality_grade = quality_info.get("quality_grade", "unknown")
|
561 |
+
overall_confidence = quality_info.get("overall_confidence", 0)
|
562 |
+
summary_lines.extend([
|
563 |
+
f"Detection Quality: {quality_grade.title()} (avg confidence: {overall_confidence:.3f})",
|
564 |
+
""
|
565 |
+
])
|
566 |
+
|
567 |
+
summary_lines.append(f"Processing completed in {processing_info.get('processing_time_seconds', 0):.1f} seconds.")
|
568 |
+
|
569 |
+
return "\n".join(summary_lines)
|
570 |
|
571 |
@spaces.GPU
|
572 |
+
def handle_video_upload(video_input, video_url, input_type, model_name,
|
573 |
+
confidence_threshold, process_interval):
|
574 |
"""
|
575 |
+
處理影片上傳的函數
|
576 |
|
577 |
Args:
|
578 |
+
video_input: 上傳的視頻文件
|
579 |
+
video_url: 視頻URL(如果使用URL輸入)
|
580 |
+
input_type: 輸入類型("upload" 或 "url")
|
581 |
+
model_name: YOLO模型名稱
|
582 |
+
confidence_threshold: 置信度閾值
|
583 |
+
process_interval: 處理間隔(每N幀處理一次)
|
584 |
|
585 |
Returns:
|
586 |
Tuple: (output_video_path, summary_html, formatted_stats)
|
587 |
"""
|
588 |
+
if video_processor is None:
|
589 |
+
error_msg = "Error: Video processor not initialized."
|
590 |
+
error_html = f"<div class='video-summary-content-wrapper'><pre>{error_msg}</pre></div>"
|
591 |
+
return None, error_html, {"error": "Video processor not available"}
|
592 |
|
593 |
+
video_path = None
|
594 |
+
|
595 |
+
# 根據輸入類型處理
|
596 |
if input_type == "upload" and video_input:
|
|
|
597 |
video_path = video_input
|
598 |
+
print(f"Processing uploaded video file: {video_path}")
|
599 |
elif input_type == "url" and video_url:
|
600 |
print(f"Processing video from URL: {video_url}")
|
601 |
+
video_path, error_msg = download_video_from_url(video_url)
|
602 |
+
if error_msg:
|
603 |
+
error_html = f"<div class='video-summary-content-wrapper'><pre>{error_msg}</pre></div>"
|
604 |
+
return None, error_html, {"error": error_msg}
|
605 |
+
|
606 |
+
if not video_path:
|
607 |
+
error_msg = "Please provide a video file or valid URL."
|
608 |
+
error_html = f"<div class='video-summary-content-wrapper'><pre>{error_msg}</pre></div>"
|
609 |
+
return None, error_html, {"error": "No video input provided"}
|
610 |
+
|
611 |
+
print(f"Starting practical video analysis: model={model_name}, confidence={confidence_threshold}, interval={process_interval}")
|
612 |
+
|
613 |
+
processing_start_time = time.time()
|
614 |
+
|
615 |
try:
|
616 |
+
output_video_path, analysis_results = video_processor.process_video(
|
|
|
617 |
video_path=video_path,
|
618 |
model_name=model_name,
|
619 |
confidence_threshold=confidence_threshold,
|
620 |
+
process_interval=int(process_interval)
|
621 |
)
|
622 |
+
|
623 |
+
print(f"Video processing function returned: path={output_video_path}")
|
624 |
+
|
625 |
+
if output_video_path is None:
|
626 |
+
error_msg = analysis_results.get("error", "Unknown error occurred during video processing")
|
627 |
+
error_html = f"<div class='video-summary-content-wrapper'><pre>Processing failed: {error_msg}</pre></div>"
|
628 |
+
return None, error_html, analysis_results
|
629 |
+
|
630 |
+
# 生成摘要,直接用統計數據
|
631 |
+
basic_summary = generate_basic_video_summary(analysis_results)
|
632 |
+
|
633 |
+
# Final Result
|
634 |
+
processing_time = time.time() - processing_start_time
|
635 |
+
processing_info = analysis_results.get("processing_info", {})
|
636 |
+
|
637 |
+
summary_lines = [
|
638 |
+
f"Video processing completed in {processing_time:.2f} seconds.",
|
639 |
+
f"Analyzed {processing_info.get('frames_analyzed', 0)} frames out of {processing_info.get('total_frames', 0)} total frames.",
|
640 |
+
f"Processing interval: every {process_interval} frames",
|
641 |
+
basic_summary
|
642 |
+
]
|
643 |
+
|
644 |
+
summary_content = '\n'.join(summary_lines)
|
645 |
+
summary_html = f"<div class='video-summary-content-wrapper'><pre>{summary_content}</pre></div>"
|
646 |
+
|
647 |
+
return output_video_path, summary_html, analysis_results
|
648 |
|
649 |
except Exception as e:
|
650 |
print(f"Error in handle_video_upload: {e}")
|
651 |
+
traceback.print_exc()
|
652 |
+
error_msg = f"影片處理失敗: {str(e)}"
|
653 |
error_html = f"<div class='video-summary-content-wrapper'><pre>{error_msg}</pre></div>"
|
654 |
return None, error_html, {"error": str(e)}
|
655 |
|
|
|
656 |
def main():
|
657 |
+
"""主函數,初始化並啟動Gradio"""
|
|
|
|
|
658 |
global ui_manager
|
659 |
|
660 |
+
print("=== VisionScout Application Starting ===")
|
661 |
+
|
662 |
print("Initializing processors...")
|
663 |
initialization_success = initialize_processors()
|
664 |
if not initialization_success:
|
665 |
+
print("ERROR: Failed to initialize processors. Application cannot start.")
|
666 |
return
|
667 |
+
|
|
|
668 |
print("Initializing UI manager...")
|
669 |
ui_manager = initialize_ui_manager()
|
670 |
+
|
|
|
671 |
print("Creating Gradio interface...")
|
672 |
demo_interface = ui_manager.create_interface(
|
673 |
handle_image_upload_fn=handle_image_upload,
|
674 |
handle_video_upload_fn=handle_video_upload,
|
675 |
download_video_from_url_fn=download_video_from_url
|
676 |
)
|
677 |
+
|
678 |
print("Launching application...")
|
679 |
demo_interface.launch(debug=True)
|
680 |
|
ui_manager.py
CHANGED
@@ -7,17 +7,17 @@ from style import Style
|
|
7 |
|
8 |
class UIManager:
|
9 |
"""
|
10 |
-
Manages all UI-related functionality
|
11 |
Handles Gradio interface creation, component definitions, and event binding.
|
12 |
"""
|
13 |
-
|
14 |
def __init__(self):
|
15 |
"""Initialize the UI Manager."""
|
16 |
self.available_models = None
|
17 |
self.model_choices = []
|
18 |
self.class_choices_formatted = []
|
19 |
self._setup_model_choices()
|
20 |
-
|
21 |
def _setup_model_choices(self):
|
22 |
"""Setup model choices for dropdowns."""
|
23 |
try:
|
@@ -26,14 +26,14 @@ class UIManager:
|
|
26 |
except ImportError:
|
27 |
# Fallback model choices if DetectionModel is not available
|
28 |
self.model_choices = ["yolov8n.pt", "yolov8s.pt", "yolov8m.pt", "yolov8l.pt", "yolov8x.pt"]
|
29 |
-
|
30 |
# Setup class choices
|
31 |
self.class_choices_formatted = [f"{id}: {name}" for id, name in self.get_all_classes()]
|
32 |
-
|
33 |
def get_all_classes(self):
|
34 |
"""
|
35 |
Gets all available COCO classes.
|
36 |
-
|
37 |
Returns:
|
38 |
List[Tuple[int, str]]: List of (class_id, class_name) tuples
|
39 |
"""
|
@@ -52,7 +52,7 @@ class UIManager:
|
|
52 |
except Exception:
|
53 |
pass
|
54 |
|
55 |
-
#
|
56 |
default_classes = {
|
57 |
0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus',
|
58 |
6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant',
|
@@ -72,27 +72,27 @@ class UIManager:
|
|
72 |
77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'
|
73 |
}
|
74 |
return sorted(default_classes.items())
|
75 |
-
|
76 |
def set_image_processor(self, image_processor):
|
77 |
"""
|
78 |
Set the image processor reference for dynamic class retrieval.
|
79 |
-
|
80 |
Args:
|
81 |
image_processor: The ImageProcessor instance
|
82 |
"""
|
83 |
self._image_processor = image_processor
|
84 |
-
|
85 |
def get_css_styles(self):
|
86 |
"""
|
87 |
Get CSS styles for the interface.
|
88 |
-
|
89 |
Returns:
|
90 |
str: CSS styles
|
91 |
"""
|
92 |
try:
|
93 |
return Style.get_css()
|
94 |
except ImportError:
|
95 |
-
#
|
96 |
return """
|
97 |
.app-header {
|
98 |
text-align: center;
|
@@ -111,15 +111,23 @@ class UIManager:
|
|
111 |
border: none !important;
|
112 |
border-radius: 8px !important;
|
113 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
"""
|
115 |
-
|
116 |
def get_model_description(self, model_name):
|
117 |
"""
|
118 |
Get model description for the given model name.
|
119 |
-
|
120 |
Args:
|
121 |
model_name: Name of the model
|
122 |
-
|
123 |
Returns:
|
124 |
str: Model description
|
125 |
"""
|
@@ -127,11 +135,11 @@ class UIManager:
|
|
127 |
return DetectionModel.get_model_description(model_name)
|
128 |
except ImportError:
|
129 |
return f"Model: {model_name}"
|
130 |
-
|
131 |
def create_header(self):
|
132 |
"""
|
133 |
Create the application header.
|
134 |
-
|
135 |
Returns:
|
136 |
gr.HTML: Header HTML component
|
137 |
"""
|
@@ -142,7 +150,7 @@ class UIManager:
|
|
142 |
<div style="display: flex; justify-content: center; gap: 10px; margin: 0.5rem 0;"><div style="height: 3px; width: 80px; background: linear-gradient(90deg, #38b2ac, #4299e1);"></div></div>
|
143 |
<div style="display: flex; justify-content: center; gap: 25px; margin-top: 1.5rem;">
|
144 |
<div style="padding: 8px 15px; border-radius: 20px; background: rgba(66, 153, 225, 0.15); color: #2b6cb0; font-weight: 500; font-size: 0.9rem;"><span style="margin-right: 6px;">🖼️</span> Image Analysis</div>
|
145 |
-
<div style="padding: 8px 15px; border-radius: 20px; background: rgba(56, 178, 172, 0.15); color: #2b6cb0; font-weight: 500; font-size: 0.9rem;"><span style="margin-right: 6px;">🎬</span> Video Analysis</div>
|
146 |
</div>
|
147 |
<div style="margin-top: 20px; padding: 10px 15px; background-color: rgba(255, 248, 230, 0.9); border-left: 3px solid #f6ad55; border-radius: 6px; max-width: 600px; margin-left: auto; margin-right: auto; text-align: left;">
|
148 |
<p style="margin: 0; font-size: 0.9rem; color: #805ad5; font-weight: 500;">
|
@@ -152,18 +160,18 @@ class UIManager:
|
|
152 |
</div>
|
153 |
</div>
|
154 |
""")
|
155 |
-
|
156 |
def create_footer(self):
|
157 |
"""
|
158 |
Create the application footer.
|
159 |
-
|
160 |
Returns:
|
161 |
gr.HTML: Footer HTML component
|
162 |
"""
|
163 |
return gr.HTML("""
|
164 |
<div class="footer" style="padding: 25px 0; text-align: center; background: linear-gradient(to right, #f5f9fc, #e1f5fe); border-top: 1px solid #e2e8f0; margin-top: 30px;">
|
165 |
<div style="margin-bottom: 15px;">
|
166 |
-
<p style="font-size: 14px; color: #4A5568; margin: 5px 0;">Powered by YOLOv8, CLIP, Places365, Meta Llama3.2 and Ultralytics • Created with Gradio</p>
|
167 |
</div>
|
168 |
<div style="display: flex; align-items: center; justify-content: center; gap: 20px; margin-top: 15px;">
|
169 |
<p style="font-family: 'Arial', sans-serif; font-size: 14px; font-weight: 500; letter-spacing: 2px; background: linear-gradient(90deg, #38b2ac, #4299e1); -webkit-background-clip: text; -webkit-text-fill-color: transparent; margin: 0; text-transform: uppercase; display: inline-block;">EXPLORE THE CODE →</p>
|
@@ -173,27 +181,27 @@ class UIManager:
|
|
173 |
</div>
|
174 |
</div>
|
175 |
""")
|
176 |
-
|
177 |
def create_image_tab(self):
|
178 |
"""
|
179 |
Create the image processing tab with all components.
|
180 |
-
|
181 |
Returns:
|
182 |
Dict: Dictionary containing all image tab components
|
183 |
"""
|
184 |
components = {}
|
185 |
-
|
186 |
with gr.Tab("Image Processing"):
|
187 |
components['current_image_model'] = gr.State("yolov8m.pt")
|
188 |
-
|
189 |
with gr.Row(equal_height=False):
|
190 |
# Left Column: Image Input & Controls
|
191 |
with gr.Column(scale=4, elem_classes="input-panel"):
|
192 |
with gr.Group():
|
193 |
gr.HTML('<div class="section-heading">Upload Image</div>')
|
194 |
components['image_input'] = gr.Image(
|
195 |
-
type="pil",
|
196 |
-
label="Upload an image",
|
197 |
elem_classes="upload-box"
|
198 |
)
|
199 |
|
@@ -204,7 +212,7 @@ class UIManager:
|
|
204 |
label="Select Model",
|
205 |
info="Choose speed vs. accuracy (n=fast, m=balanced, x=accurate)"
|
206 |
)
|
207 |
-
|
208 |
components['image_model_info'] = gr.Markdown(
|
209 |
self.get_model_description("yolov8m.pt")
|
210 |
)
|
@@ -234,7 +242,7 @@ class UIManager:
|
|
234 |
components['vehicles_btn'] = gr.Button("Vehicles", size="sm")
|
235 |
components['animals_btn'] = gr.Button("Animals", size="sm")
|
236 |
components['objects_btn'] = gr.Button("Common Objects", size="sm")
|
237 |
-
|
238 |
components['image_class_filter'] = gr.Dropdown(
|
239 |
choices=self.class_choices_formatted,
|
240 |
multiselect=True,
|
@@ -243,8 +251,8 @@ class UIManager:
|
|
243 |
)
|
244 |
|
245 |
components['image_detect_btn'] = gr.Button(
|
246 |
-
"Analyze Image",
|
247 |
-
variant="primary",
|
248 |
elem_classes="detect-btn"
|
249 |
)
|
250 |
|
@@ -289,21 +297,21 @@ class UIManager:
|
|
289 |
# Detection Result Tab
|
290 |
with gr.Tab("Detection Result"):
|
291 |
components['image_result_image'] = gr.Image(
|
292 |
-
type="pil",
|
293 |
label="Detection Result"
|
294 |
)
|
295 |
gr.HTML('<div class="section-heading">Detection Details</div>')
|
296 |
components['image_result_text'] = gr.Textbox(
|
297 |
-
label=None,
|
298 |
-
lines=10,
|
299 |
-
elem_id="detection-details",
|
300 |
container=False
|
301 |
)
|
302 |
|
303 |
# Scene Understanding Tab
|
304 |
with gr.Tab("Scene Understanding"):
|
305 |
gr.HTML('<div class="section-heading">Scene Analysis</div>')
|
306 |
-
|
307 |
# Info details
|
308 |
gr.HTML("""
|
309 |
<details class="info-details" style="margin: 5px 0 15px 0;">
|
@@ -327,16 +335,16 @@ class UIManager:
|
|
327 |
</p>
|
328 |
</div>
|
329 |
''')
|
330 |
-
|
331 |
components['image_scene_description_html'] = gr.HTML(
|
332 |
-
label=None,
|
333 |
elem_id="scene_analysis_description_text"
|
334 |
)
|
335 |
|
336 |
# Original Scene Analysis accordion
|
337 |
with gr.Accordion("Original Scene Analysis", open=False, elem_id="original_scene_analysis_accordion"):
|
338 |
components['image_llm_description'] = gr.HTML(
|
339 |
-
label=None,
|
340 |
elem_id="original_scene_description_text"
|
341 |
)
|
342 |
|
@@ -344,32 +352,32 @@ class UIManager:
|
|
344 |
with gr.Column(scale=1):
|
345 |
gr.HTML('<div class="section-heading" style="font-size:1rem; text-align:left;">Possible Activities</div>')
|
346 |
components['image_activities_list'] = gr.Dataframe(
|
347 |
-
headers=["Activity"],
|
348 |
-
datatype=["str"],
|
349 |
-
row_count=5,
|
350 |
-
col_count=1,
|
351 |
wrap=True
|
352 |
)
|
353 |
|
354 |
with gr.Column(scale=1):
|
355 |
gr.HTML('<div class="section-heading" style="font-size:1rem; text-align:left;">Safety Concerns</div>')
|
356 |
components['image_safety_list'] = gr.Dataframe(
|
357 |
-
headers=["Concern"],
|
358 |
-
datatype=["str"],
|
359 |
-
row_count=5,
|
360 |
-
col_count=1,
|
361 |
wrap=True
|
362 |
)
|
363 |
|
364 |
gr.HTML('<div class="section-heading">Functional Zones</div>')
|
365 |
components['image_zones_json'] = gr.JSON(
|
366 |
-
label=None,
|
367 |
elem_classes="json-box"
|
368 |
)
|
369 |
|
370 |
gr.HTML('<div class="section-heading">Lighting Conditions</div>')
|
371 |
components['image_lighting_info'] = gr.JSON(
|
372 |
-
label=None,
|
373 |
elem_classes="json-box"
|
374 |
)
|
375 |
|
@@ -379,27 +387,28 @@ class UIManager:
|
|
379 |
with gr.Column(scale=3, elem_classes="plot-column"):
|
380 |
gr.HTML('<div class="section-heading">Object Distribution</div>')
|
381 |
components['image_plot_output'] = gr.Plot(
|
382 |
-
label=None,
|
383 |
elem_classes="large-plot-container"
|
384 |
)
|
385 |
with gr.Column(scale=2, elem_classes="stats-column"):
|
386 |
gr.HTML('<div class="section-heading">Detection Statistics</div>')
|
387 |
components['image_stats_json'] = gr.JSON(
|
388 |
-
label=None,
|
389 |
elem_classes="enhanced-json-display"
|
390 |
)
|
391 |
-
|
392 |
return components
|
393 |
|
394 |
def create_video_tab(self):
|
395 |
"""
|
396 |
Create the video processing tab with all components.
|
397 |
-
|
|
|
398 |
Returns:
|
399 |
Dict: Dictionary containing all video tab components
|
400 |
"""
|
401 |
components = {}
|
402 |
-
|
403 |
with gr.Tab("Video Processing"):
|
404 |
with gr.Row(equal_height=False):
|
405 |
# Left Column: Video Input & Controls
|
@@ -444,21 +453,35 @@ class UIManager:
|
|
444 |
choices=self.model_choices,
|
445 |
value="yolov8n.pt",
|
446 |
label="Select Model (Video)",
|
447 |
-
info="Faster models (like 'n') are recommended"
|
448 |
)
|
449 |
components['video_confidence'] = gr.Slider(
|
450 |
minimum=0.1, maximum=0.9, value=0.4, step=0.05,
|
451 |
-
label="Confidence Threshold (Video)"
|
|
|
452 |
)
|
453 |
components['video_process_interval'] = gr.Slider(
|
454 |
minimum=1, maximum=60, value=10, step=1,
|
455 |
label="Processing Interval (Frames)",
|
456 |
-
info="Analyze every Nth frame (higher value = faster)"
|
457 |
)
|
458 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
459 |
components['video_process_btn'] = gr.Button(
|
460 |
-
"
|
461 |
-
variant="primary",
|
462 |
elem_classes="detect-btn"
|
463 |
)
|
464 |
|
@@ -467,9 +490,17 @@ class UIManager:
|
|
467 |
gr.HTML('<div class="section-heading">How to Use (Video)</div>')
|
468 |
gr.Markdown("""
|
469 |
1. Choose your input method: Upload a file or enter a URL.
|
470 |
-
2. Adjust settings if needed
|
471 |
-
|
472 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
473 |
""")
|
474 |
|
475 |
# Video examples
|
@@ -477,8 +508,9 @@ class UIManager:
|
|
477 |
gr.HTML("""
|
478 |
<div style="padding: 10px; background-color: #f0f7ff; border-radius: 6px; margin-bottom: 15px;">
|
479 |
<p style="font-size: 14px; color: #4A5568; margin: 0;">
|
480 |
-
Upload any video containing objects that YOLO can detect. For testing, find sample videos
|
481 |
-
<a href="https://www.pexels.com/search/videos/street/" target="_blank" style="color: #3182ce; text-decoration: underline;">
|
|
|
482 |
</p>
|
483 |
</div>
|
484 |
""")
|
@@ -486,48 +518,87 @@ class UIManager:
|
|
486 |
# Right Column: Video Results
|
487 |
with gr.Column(scale=6, elem_classes="output-panel video-result-panel"):
|
488 |
gr.HTML("""
|
489 |
-
<div class="section-heading">Video
|
490 |
<details class="info-details" style="margin: 5px 0 15px 0;">
|
491 |
<summary style="padding: 8px; background-color: #f0f7ff; border-radius: 6px; border-left: 3px solid #4299e1; font-weight: bold; cursor: pointer; color: #2b6cb0;">
|
492 |
-
🎬 Video
|
493 |
</summary>
|
494 |
<div style="margin-top: 8px; padding: 10px; background-color: #f8f9fa; border-radius: 6px; border: 1px solid #e2e8f0;">
|
495 |
<p style="font-size: 13px; color: #718096; margin: 0;">
|
496 |
-
|
497 |
-
|
|
|
|
|
|
|
|
|
498 |
</p>
|
499 |
</div>
|
500 |
</details>
|
501 |
""")
|
502 |
-
|
503 |
components['video_output'] = gr.Video(
|
504 |
-
label="
|
505 |
elem_classes="video-output-container"
|
506 |
)
|
507 |
|
508 |
-
gr.
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
513 |
|
514 |
-
gr.HTML('<div class="section-heading">Aggregated Statistics</div>')
|
515 |
-
components['video_stats_json'] = gr.JSON(
|
516 |
-
label=None,
|
517 |
-
elem_classes="video-stats-display"
|
518 |
-
)
|
519 |
-
|
520 |
return components
|
521 |
-
|
522 |
def get_filter_button_mappings(self):
|
523 |
"""
|
524 |
Get the class ID mappings for filter buttons.
|
525 |
-
|
526 |
Returns:
|
527 |
Dict: Dictionary containing class ID lists for different categories
|
528 |
"""
|
529 |
available_classes_list = self.get_all_classes()
|
530 |
-
|
531 |
return {
|
532 |
'people_classes_ids': [0],
|
533 |
'vehicles_classes_ids': [1, 2, 3, 4, 5, 6, 7, 8],
|
@@ -535,36 +606,36 @@ class UIManager:
|
|
535 |
'common_objects_ids': [39, 41, 42, 43, 44, 45, 56, 57, 60, 62, 63, 67, 73],
|
536 |
'available_classes_list': available_classes_list
|
537 |
}
|
538 |
-
|
539 |
-
def create_interface(self,
|
540 |
-
handle_image_upload_fn,
|
541 |
-
handle_video_upload_fn,
|
542 |
download_video_from_url_fn):
|
543 |
"""
|
544 |
Create the complete Gradio interface.
|
545 |
-
|
546 |
Args:
|
547 |
handle_image_upload_fn: Function to handle image upload
|
548 |
handle_video_upload_fn: Function to handle video upload
|
549 |
download_video_from_url_fn: Function to download video from URL
|
550 |
-
|
551 |
Returns:
|
552 |
gr.Blocks: Complete Gradio interface
|
553 |
"""
|
554 |
css = self.get_css_styles()
|
555 |
-
|
556 |
with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="teal", secondary_hue="blue")) as demo:
|
557 |
-
|
558 |
# Header
|
559 |
with gr.Group(elem_classes="app-header"):
|
560 |
self.create_header()
|
561 |
|
562 |
# Main Content with Tabs
|
563 |
with gr.Tabs(elem_classes="tabs"):
|
564 |
-
|
565 |
# Image Processing Tab
|
566 |
image_components = self.create_image_tab()
|
567 |
-
|
568 |
# Video Processing Tab
|
569 |
video_components = self.create_video_tab()
|
570 |
|
@@ -573,22 +644,22 @@ class UIManager:
|
|
573 |
|
574 |
# Setup Event Listeners
|
575 |
self._setup_event_listeners(
|
576 |
-
image_components,
|
577 |
-
video_components,
|
578 |
-
handle_image_upload_fn,
|
579 |
handle_video_upload_fn
|
580 |
)
|
581 |
|
582 |
return demo
|
583 |
-
|
584 |
-
def _setup_event_listeners(self,
|
585 |
-
image_components,
|
586 |
-
video_components,
|
587 |
-
handle_image_upload_fn,
|
588 |
handle_video_upload_fn):
|
589 |
"""
|
590 |
Setup all event listeners for the interface.
|
591 |
-
|
592 |
Args:
|
593 |
image_components: Dictionary of image tab components
|
594 |
video_components: Dictionary of video tab components
|
@@ -611,73 +682,73 @@ class UIManager:
|
|
611 |
common_objects_ids = filter_mappings['common_objects_ids']
|
612 |
|
613 |
image_components['people_btn'].click(
|
614 |
-
lambda: [f"{id}: {name}" for id, name in available_classes_list if id in people_classes_ids],
|
615 |
outputs=image_components['image_class_filter']
|
616 |
)
|
617 |
image_components['vehicles_btn'].click(
|
618 |
-
lambda: [f"{id}: {name}" for id, name in available_classes_list if id in vehicles_classes_ids],
|
619 |
outputs=image_components['image_class_filter']
|
620 |
)
|
621 |
image_components['animals_btn'].click(
|
622 |
-
lambda: [f"{id}: {name}" for id, name in available_classes_list if id in animals_classes_ids],
|
623 |
outputs=image_components['image_class_filter']
|
624 |
)
|
625 |
image_components['objects_btn'].click(
|
626 |
-
lambda: [f"{id}: {name}" for id, name in available_classes_list if id in common_objects_ids],
|
627 |
outputs=image_components['image_class_filter']
|
628 |
)
|
629 |
|
630 |
# Video Input Type Change Handler
|
631 |
video_components['video_input_type'].change(
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
)
|
641 |
|
642 |
# Image Detect Button Click Handler
|
643 |
image_components['image_detect_btn'].click(
|
644 |
fn=handle_image_upload_fn,
|
645 |
inputs=[
|
646 |
-
image_components['image_input'],
|
647 |
-
image_components['image_model_dropdown'],
|
648 |
-
image_components['image_confidence'],
|
649 |
-
image_components['image_class_filter'],
|
650 |
-
image_components['use_llm'],
|
651 |
image_components['use_landmark_detection']
|
652 |
],
|
653 |
outputs=[
|
654 |
-
image_components['image_result_image'],
|
655 |
-
image_components['image_result_text'],
|
656 |
-
image_components['image_stats_json'],
|
657 |
image_components['image_plot_output'],
|
658 |
-
image_components['image_scene_description_html'],
|
659 |
-
image_components['image_llm_description'],
|
660 |
-
image_components['image_activities_list'],
|
661 |
-
image_components['image_safety_list'],
|
662 |
image_components['image_zones_json'],
|
663 |
image_components['image_lighting_info']
|
664 |
]
|
665 |
)
|
666 |
|
667 |
-
# Video Process Button Click Handler
|
668 |
video_components['video_process_btn'].click(
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
],
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
]
|
683 |
)
|
|
|
7 |
|
8 |
class UIManager:
|
9 |
"""
|
10 |
+
Manages all UI-related functionality
|
11 |
Handles Gradio interface creation, component definitions, and event binding.
|
12 |
"""
|
13 |
+
|
14 |
def __init__(self):
|
15 |
"""Initialize the UI Manager."""
|
16 |
self.available_models = None
|
17 |
self.model_choices = []
|
18 |
self.class_choices_formatted = []
|
19 |
self._setup_model_choices()
|
20 |
+
|
21 |
def _setup_model_choices(self):
|
22 |
"""Setup model choices for dropdowns."""
|
23 |
try:
|
|
|
26 |
except ImportError:
|
27 |
# Fallback model choices if DetectionModel is not available
|
28 |
self.model_choices = ["yolov8n.pt", "yolov8s.pt", "yolov8m.pt", "yolov8l.pt", "yolov8x.pt"]
|
29 |
+
|
30 |
# Setup class choices
|
31 |
self.class_choices_formatted = [f"{id}: {name}" for id, name in self.get_all_classes()]
|
32 |
+
|
33 |
def get_all_classes(self):
|
34 |
"""
|
35 |
Gets all available COCO classes.
|
36 |
+
|
37 |
Returns:
|
38 |
List[Tuple[int, str]]: List of (class_id, class_name) tuples
|
39 |
"""
|
|
|
52 |
except Exception:
|
53 |
pass
|
54 |
|
55 |
+
# COCO Classes
|
56 |
default_classes = {
|
57 |
0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus',
|
58 |
6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant',
|
|
|
72 |
77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'
|
73 |
}
|
74 |
return sorted(default_classes.items())
|
75 |
+
|
76 |
def set_image_processor(self, image_processor):
|
77 |
"""
|
78 |
Set the image processor reference for dynamic class retrieval.
|
79 |
+
|
80 |
Args:
|
81 |
image_processor: The ImageProcessor instance
|
82 |
"""
|
83 |
self._image_processor = image_processor
|
84 |
+
|
85 |
def get_css_styles(self):
|
86 |
"""
|
87 |
Get CSS styles for the interface.
|
88 |
+
|
89 |
Returns:
|
90 |
str: CSS styles
|
91 |
"""
|
92 |
try:
|
93 |
return Style.get_css()
|
94 |
except ImportError:
|
95 |
+
# fallback defualt CSS style
|
96 |
return """
|
97 |
.app-header {
|
98 |
text-align: center;
|
|
|
111 |
border: none !important;
|
112 |
border-radius: 8px !important;
|
113 |
}
|
114 |
+
.video-summary-content-wrapper {
|
115 |
+
max-height: 400px;
|
116 |
+
overflow-y: auto;
|
117 |
+
background-color: #f8f9fa;
|
118 |
+
border-radius: 8px;
|
119 |
+
padding: 15px;
|
120 |
+
border: 1px solid #e2e8f0;
|
121 |
+
}
|
122 |
"""
|
123 |
+
|
124 |
def get_model_description(self, model_name):
|
125 |
"""
|
126 |
Get model description for the given model name.
|
127 |
+
|
128 |
Args:
|
129 |
model_name: Name of the model
|
130 |
+
|
131 |
Returns:
|
132 |
str: Model description
|
133 |
"""
|
|
|
135 |
return DetectionModel.get_model_description(model_name)
|
136 |
except ImportError:
|
137 |
return f"Model: {model_name}"
|
138 |
+
|
139 |
def create_header(self):
|
140 |
"""
|
141 |
Create the application header.
|
142 |
+
|
143 |
Returns:
|
144 |
gr.HTML: Header HTML component
|
145 |
"""
|
|
|
150 |
<div style="display: flex; justify-content: center; gap: 10px; margin: 0.5rem 0;"><div style="height: 3px; width: 80px; background: linear-gradient(90deg, #38b2ac, #4299e1);"></div></div>
|
151 |
<div style="display: flex; justify-content: center; gap: 25px; margin-top: 1.5rem;">
|
152 |
<div style="padding: 8px 15px; border-radius: 20px; background: rgba(66, 153, 225, 0.15); color: #2b6cb0; font-weight: 500; font-size: 0.9rem;"><span style="margin-right: 6px;">🖼️</span> Image Analysis</div>
|
153 |
+
<div style="padding: 8px 15px; border-radius: 20px; background: rgba(56, 178, 172, 0.15); color: #2b6cb0; font-weight: 500; font-size: 0.9rem;"><span style="margin-right: 6px;">🎬</span> Video Analysis with Temporal Tracking</div>
|
154 |
</div>
|
155 |
<div style="margin-top: 20px; padding: 10px 15px; background-color: rgba(255, 248, 230, 0.9); border-left: 3px solid #f6ad55; border-radius: 6px; max-width: 600px; margin-left: auto; margin-right: auto; text-align: left;">
|
156 |
<p style="margin: 0; font-size: 0.9rem; color: #805ad5; font-weight: 500;">
|
|
|
160 |
</div>
|
161 |
</div>
|
162 |
""")
|
163 |
+
|
164 |
def create_footer(self):
|
165 |
"""
|
166 |
Create the application footer.
|
167 |
+
|
168 |
Returns:
|
169 |
gr.HTML: Footer HTML component
|
170 |
"""
|
171 |
return gr.HTML("""
|
172 |
<div class="footer" style="padding: 25px 0; text-align: center; background: linear-gradient(to right, #f5f9fc, #e1f5fe); border-top: 1px solid #e2e8f0; margin-top: 30px;">
|
173 |
<div style="margin-bottom: 15px;">
|
174 |
+
<p style="font-size: 14px; color: #4A5568; margin: 5px 0;">Powered by YOLOv8, CLIP, Places365, Meta Llama3.2 and Ultralytics • Enhanced Video Processing with Temporal Analysis • Created with Gradio</p>
|
175 |
</div>
|
176 |
<div style="display: flex; align-items: center; justify-content: center; gap: 20px; margin-top: 15px;">
|
177 |
<p style="font-family: 'Arial', sans-serif; font-size: 14px; font-weight: 500; letter-spacing: 2px; background: linear-gradient(90deg, #38b2ac, #4299e1); -webkit-background-clip: text; -webkit-text-fill-color: transparent; margin: 0; text-transform: uppercase; display: inline-block;">EXPLORE THE CODE →</p>
|
|
|
181 |
</div>
|
182 |
</div>
|
183 |
""")
|
184 |
+
|
185 |
def create_image_tab(self):
|
186 |
"""
|
187 |
Create the image processing tab with all components.
|
188 |
+
|
189 |
Returns:
|
190 |
Dict: Dictionary containing all image tab components
|
191 |
"""
|
192 |
components = {}
|
193 |
+
|
194 |
with gr.Tab("Image Processing"):
|
195 |
components['current_image_model'] = gr.State("yolov8m.pt")
|
196 |
+
|
197 |
with gr.Row(equal_height=False):
|
198 |
# Left Column: Image Input & Controls
|
199 |
with gr.Column(scale=4, elem_classes="input-panel"):
|
200 |
with gr.Group():
|
201 |
gr.HTML('<div class="section-heading">Upload Image</div>')
|
202 |
components['image_input'] = gr.Image(
|
203 |
+
type="pil",
|
204 |
+
label="Upload an image",
|
205 |
elem_classes="upload-box"
|
206 |
)
|
207 |
|
|
|
212 |
label="Select Model",
|
213 |
info="Choose speed vs. accuracy (n=fast, m=balanced, x=accurate)"
|
214 |
)
|
215 |
+
|
216 |
components['image_model_info'] = gr.Markdown(
|
217 |
self.get_model_description("yolov8m.pt")
|
218 |
)
|
|
|
242 |
components['vehicles_btn'] = gr.Button("Vehicles", size="sm")
|
243 |
components['animals_btn'] = gr.Button("Animals", size="sm")
|
244 |
components['objects_btn'] = gr.Button("Common Objects", size="sm")
|
245 |
+
|
246 |
components['image_class_filter'] = gr.Dropdown(
|
247 |
choices=self.class_choices_formatted,
|
248 |
multiselect=True,
|
|
|
251 |
)
|
252 |
|
253 |
components['image_detect_btn'] = gr.Button(
|
254 |
+
"Analyze Image",
|
255 |
+
variant="primary",
|
256 |
elem_classes="detect-btn"
|
257 |
)
|
258 |
|
|
|
297 |
# Detection Result Tab
|
298 |
with gr.Tab("Detection Result"):
|
299 |
components['image_result_image'] = gr.Image(
|
300 |
+
type="pil",
|
301 |
label="Detection Result"
|
302 |
)
|
303 |
gr.HTML('<div class="section-heading">Detection Details</div>')
|
304 |
components['image_result_text'] = gr.Textbox(
|
305 |
+
label=None,
|
306 |
+
lines=10,
|
307 |
+
elem_id="detection-details",
|
308 |
container=False
|
309 |
)
|
310 |
|
311 |
# Scene Understanding Tab
|
312 |
with gr.Tab("Scene Understanding"):
|
313 |
gr.HTML('<div class="section-heading">Scene Analysis</div>')
|
314 |
+
|
315 |
# Info details
|
316 |
gr.HTML("""
|
317 |
<details class="info-details" style="margin: 5px 0 15px 0;">
|
|
|
335 |
</p>
|
336 |
</div>
|
337 |
''')
|
338 |
+
|
339 |
components['image_scene_description_html'] = gr.HTML(
|
340 |
+
label=None,
|
341 |
elem_id="scene_analysis_description_text"
|
342 |
)
|
343 |
|
344 |
# Original Scene Analysis accordion
|
345 |
with gr.Accordion("Original Scene Analysis", open=False, elem_id="original_scene_analysis_accordion"):
|
346 |
components['image_llm_description'] = gr.HTML(
|
347 |
+
label=None,
|
348 |
elem_id="original_scene_description_text"
|
349 |
)
|
350 |
|
|
|
352 |
with gr.Column(scale=1):
|
353 |
gr.HTML('<div class="section-heading" style="font-size:1rem; text-align:left;">Possible Activities</div>')
|
354 |
components['image_activities_list'] = gr.Dataframe(
|
355 |
+
headers=["Activity"],
|
356 |
+
datatype=["str"],
|
357 |
+
row_count=5,
|
358 |
+
col_count=1,
|
359 |
wrap=True
|
360 |
)
|
361 |
|
362 |
with gr.Column(scale=1):
|
363 |
gr.HTML('<div class="section-heading" style="font-size:1rem; text-align:left;">Safety Concerns</div>')
|
364 |
components['image_safety_list'] = gr.Dataframe(
|
365 |
+
headers=["Concern"],
|
366 |
+
datatype=["str"],
|
367 |
+
row_count=5,
|
368 |
+
col_count=1,
|
369 |
wrap=True
|
370 |
)
|
371 |
|
372 |
gr.HTML('<div class="section-heading">Functional Zones</div>')
|
373 |
components['image_zones_json'] = gr.JSON(
|
374 |
+
label=None,
|
375 |
elem_classes="json-box"
|
376 |
)
|
377 |
|
378 |
gr.HTML('<div class="section-heading">Lighting Conditions</div>')
|
379 |
components['image_lighting_info'] = gr.JSON(
|
380 |
+
label=None,
|
381 |
elem_classes="json-box"
|
382 |
)
|
383 |
|
|
|
387 |
with gr.Column(scale=3, elem_classes="plot-column"):
|
388 |
gr.HTML('<div class="section-heading">Object Distribution</div>')
|
389 |
components['image_plot_output'] = gr.Plot(
|
390 |
+
label=None,
|
391 |
elem_classes="large-plot-container"
|
392 |
)
|
393 |
with gr.Column(scale=2, elem_classes="stats-column"):
|
394 |
gr.HTML('<div class="section-heading">Detection Statistics</div>')
|
395 |
components['image_stats_json'] = gr.JSON(
|
396 |
+
label=None,
|
397 |
elem_classes="enhanced-json-display"
|
398 |
)
|
399 |
+
|
400 |
return components
|
401 |
|
402 |
def create_video_tab(self):
|
403 |
"""
|
404 |
Create the video processing tab with all components.
|
405 |
+
注意:移除了複雜的時序分析控制項,簡化為基本的統計分析
|
406 |
+
|
407 |
Returns:
|
408 |
Dict: Dictionary containing all video tab components
|
409 |
"""
|
410 |
components = {}
|
411 |
+
|
412 |
with gr.Tab("Video Processing"):
|
413 |
with gr.Row(equal_height=False):
|
414 |
# Left Column: Video Input & Controls
|
|
|
453 |
choices=self.model_choices,
|
454 |
value="yolov8n.pt",
|
455 |
label="Select Model (Video)",
|
456 |
+
info="Faster models (like 'n') are recommended for video processing"
|
457 |
)
|
458 |
components['video_confidence'] = gr.Slider(
|
459 |
minimum=0.1, maximum=0.9, value=0.4, step=0.05,
|
460 |
+
label="Confidence Threshold (Video)",
|
461 |
+
info="Higher threshold reduces false detections"
|
462 |
)
|
463 |
components['video_process_interval'] = gr.Slider(
|
464 |
minimum=1, maximum=60, value=10, step=1,
|
465 |
label="Processing Interval (Frames)",
|
466 |
+
info="Analyze every Nth frame (higher value = faster processing)"
|
467 |
)
|
468 |
+
|
469 |
+
# 簡化的分析說明
|
470 |
+
gr.HTML("""
|
471 |
+
<div style="padding: 8px; margin-top: 10px; background-color: #f0f7ff; border-radius: 4px; border-left: 3px solid #4299e1; font-size: 12px;">
|
472 |
+
<p style="margin: 0; color: #4a5568;">
|
473 |
+
<b>Analysis Features:</b><br>
|
474 |
+
• Accurate object counting with duplicate detection removal<br>
|
475 |
+
• Timeline analysis showing when objects first appear<br>
|
476 |
+
• Duration tracking for object presence in video<br>
|
477 |
+
• Simple, clear statistical summaries
|
478 |
+
</p>
|
479 |
+
</div>
|
480 |
+
""")
|
481 |
+
|
482 |
components['video_process_btn'] = gr.Button(
|
483 |
+
"Analyze Video",
|
484 |
+
variant="primary",
|
485 |
elem_classes="detect-btn"
|
486 |
)
|
487 |
|
|
|
490 |
gr.HTML('<div class="section-heading">How to Use (Video)</div>')
|
491 |
gr.Markdown("""
|
492 |
1. Choose your input method: Upload a file or enter a URL.
|
493 |
+
2. Adjust settings if needed:
|
494 |
+
* Use **faster models** (yolov8n) for quicker processing
|
495 |
+
* Set **larger intervals** (15+ frames) for longer videos
|
496 |
+
* Adjust **confidence threshold** to filter low-quality detections
|
497 |
+
3. Click "Analyze Video". **Processing time varies based on video length.**
|
498 |
+
4. Review the results: annotated video and statistical analysis.
|
499 |
+
|
500 |
+
**⚡ Performance Tips:**
|
501 |
+
* For videos longer than 2 minutes, use interval ≥ 15 frames
|
502 |
+
* YOLOv8n model provides best speed for video processing
|
503 |
+
* Higher confidence thresholds reduce processing noise
|
504 |
""")
|
505 |
|
506 |
# Video examples
|
|
|
508 |
gr.HTML("""
|
509 |
<div style="padding: 10px; background-color: #f0f7ff; border-radius: 6px; margin-bottom: 15px;">
|
510 |
<p style="font-size: 14px; color: #4A5568; margin: 0;">
|
511 |
+
Upload any video containing objects that YOLO can detect. For testing, find sample videos from
|
512 |
+
<a href="https://www.pexels.com/search/videos/street/" target="_blank" style="color: #3182ce; text-decoration: underline;">Pexels</a> or
|
513 |
+
<a href="https://www.youtube.com/results?search_query=traffic+camera+footage" target="_blank" style="color: #3182ce; text-decoration: underline;">YouTube traffic footage</a>.
|
514 |
</p>
|
515 |
</div>
|
516 |
""")
|
|
|
518 |
# Right Column: Video Results
|
519 |
with gr.Column(scale=6, elem_classes="output-panel video-result-panel"):
|
520 |
gr.HTML("""
|
521 |
+
<div class="section-heading">Video Analysis Results</div>
|
522 |
<details class="info-details" style="margin: 5px 0 15px 0;">
|
523 |
<summary style="padding: 8px; background-color: #f0f7ff; border-radius: 6px; border-left: 3px solid #4299e1; font-weight: bold; cursor: pointer; color: #2b6cb0;">
|
524 |
+
🎬 Simplified Video Analysis Features
|
525 |
</summary>
|
526 |
<div style="margin-top: 8px; padding: 10px; background-color: #f8f9fa; border-radius: 6px; border: 1px solid #e2e8f0;">
|
527 |
<p style="font-size: 13px; color: #718096; margin: 0;">
|
528 |
+
<b>Focus on practical insights:</b> This analysis provides accurate object counts and timing information
|
529 |
+
without complex tracking. The system uses spatial clustering to eliminate duplicate detections and
|
530 |
+
provides clear timeline data showing when objects first appear and how long they remain visible.
|
531 |
+
<br><br>
|
532 |
+
<b>Key benefits:</b> Reliable object counting, clear timeline analysis, and easy-to-understand results
|
533 |
+
that directly answer questions like "How many cars are in this video?" and "When do they appear?"
|
534 |
</p>
|
535 |
</div>
|
536 |
</details>
|
537 |
""")
|
538 |
+
|
539 |
components['video_output'] = gr.Video(
|
540 |
+
label="Analyzed Video with Object Detection",
|
541 |
elem_classes="video-output-container"
|
542 |
)
|
543 |
|
544 |
+
with gr.Tabs(elem_classes="video-results-tabs"):
|
545 |
+
# Analysis Summary Tab
|
546 |
+
with gr.Tab("Analysis Summary"):
|
547 |
+
gr.HTML('<div class="section-heading">Video Analysis Report</div>')
|
548 |
+
gr.HTML("""
|
549 |
+
<div style="margin-bottom: 10px; padding: 8px; background-color: #f0f9ff; border-radius: 4px; border-left: 3px solid #4299e1; font-size: 12px;">
|
550 |
+
<p style="margin: 0; color: #4a5568;">
|
551 |
+
This summary provides object counts, timeline information, and insights about what appears in your video.
|
552 |
+
Results are based on spatial clustering analysis to ensure accurate counting.
|
553 |
+
</p>
|
554 |
+
</div>
|
555 |
+
""")
|
556 |
+
components['video_summary_text'] = gr.HTML(
|
557 |
+
label=None,
|
558 |
+
elem_id="video-summary-html-output"
|
559 |
+
)
|
560 |
+
|
561 |
+
# Detailed Statistics Tab
|
562 |
+
with gr.Tab("Detailed Statistics"):
|
563 |
+
gr.HTML('<div class="section-heading">Complete Analysis Data</div>')
|
564 |
+
|
565 |
+
with gr.Accordion("Processing Information", open=True):
|
566 |
+
gr.HTML("""
|
567 |
+
<div style="padding: 6px; background-color: #f8f9fa; border-radius: 4px; margin-bottom: 10px; font-size: 12px;">
|
568 |
+
<p style="margin: 0; color: #4a5568;">
|
569 |
+
Basic information about video processing parameters and performance.
|
570 |
+
</p>
|
571 |
+
</div>
|
572 |
+
""")
|
573 |
+
components['video_stats_json'] = gr.JSON(
|
574 |
+
label=None,
|
575 |
+
elem_classes="video-stats-display"
|
576 |
+
)
|
577 |
+
|
578 |
+
with gr.Accordion("Object Details", open=False):
|
579 |
+
gr.HTML("""
|
580 |
+
<div style="padding: 6px; background-color: #f8f9fa; border-radius: 4px; margin-bottom: 10px; font-size: 12px;">
|
581 |
+
<p style="margin: 0; color: #4a5568;">
|
582 |
+
Detailed breakdown of each object type detected, including timing and confidence information.
|
583 |
+
</p>
|
584 |
+
</div>
|
585 |
+
""")
|
586 |
+
components['video_object_details'] = gr.JSON(
|
587 |
+
label="Object-by-Object Analysis",
|
588 |
+
elem_classes="object-details-display"
|
589 |
+
)
|
590 |
|
|
|
|
|
|
|
|
|
|
|
|
|
591 |
return components
|
592 |
+
|
593 |
def get_filter_button_mappings(self):
|
594 |
"""
|
595 |
Get the class ID mappings for filter buttons.
|
596 |
+
|
597 |
Returns:
|
598 |
Dict: Dictionary containing class ID lists for different categories
|
599 |
"""
|
600 |
available_classes_list = self.get_all_classes()
|
601 |
+
|
602 |
return {
|
603 |
'people_classes_ids': [0],
|
604 |
'vehicles_classes_ids': [1, 2, 3, 4, 5, 6, 7, 8],
|
|
|
606 |
'common_objects_ids': [39, 41, 42, 43, 44, 45, 56, 57, 60, 62, 63, 67, 73],
|
607 |
'available_classes_list': available_classes_list
|
608 |
}
|
609 |
+
|
610 |
+
def create_interface(self,
|
611 |
+
handle_image_upload_fn,
|
612 |
+
handle_video_upload_fn,
|
613 |
download_video_from_url_fn):
|
614 |
"""
|
615 |
Create the complete Gradio interface.
|
616 |
+
|
617 |
Args:
|
618 |
handle_image_upload_fn: Function to handle image upload
|
619 |
handle_video_upload_fn: Function to handle video upload
|
620 |
download_video_from_url_fn: Function to download video from URL
|
621 |
+
|
622 |
Returns:
|
623 |
gr.Blocks: Complete Gradio interface
|
624 |
"""
|
625 |
css = self.get_css_styles()
|
626 |
+
|
627 |
with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="teal", secondary_hue="blue")) as demo:
|
628 |
+
|
629 |
# Header
|
630 |
with gr.Group(elem_classes="app-header"):
|
631 |
self.create_header()
|
632 |
|
633 |
# Main Content with Tabs
|
634 |
with gr.Tabs(elem_classes="tabs"):
|
635 |
+
|
636 |
# Image Processing Tab
|
637 |
image_components = self.create_image_tab()
|
638 |
+
|
639 |
# Video Processing Tab
|
640 |
video_components = self.create_video_tab()
|
641 |
|
|
|
644 |
|
645 |
# Setup Event Listeners
|
646 |
self._setup_event_listeners(
|
647 |
+
image_components,
|
648 |
+
video_components,
|
649 |
+
handle_image_upload_fn,
|
650 |
handle_video_upload_fn
|
651 |
)
|
652 |
|
653 |
return demo
|
654 |
+
|
655 |
+
def _setup_event_listeners(self,
|
656 |
+
image_components,
|
657 |
+
video_components,
|
658 |
+
handle_image_upload_fn,
|
659 |
handle_video_upload_fn):
|
660 |
"""
|
661 |
Setup all event listeners for the interface.
|
662 |
+
|
663 |
Args:
|
664 |
image_components: Dictionary of image tab components
|
665 |
video_components: Dictionary of video tab components
|
|
|
682 |
common_objects_ids = filter_mappings['common_objects_ids']
|
683 |
|
684 |
image_components['people_btn'].click(
|
685 |
+
lambda: [f"{id}: {name}" for id, name in available_classes_list if id in people_classes_ids],
|
686 |
outputs=image_components['image_class_filter']
|
687 |
)
|
688 |
image_components['vehicles_btn'].click(
|
689 |
+
lambda: [f"{id}: {name}" for id, name in available_classes_list if id in vehicles_classes_ids],
|
690 |
outputs=image_components['image_class_filter']
|
691 |
)
|
692 |
image_components['animals_btn'].click(
|
693 |
+
lambda: [f"{id}: {name}" for id, name in available_classes_list if id in animals_classes_ids],
|
694 |
outputs=image_components['image_class_filter']
|
695 |
)
|
696 |
image_components['objects_btn'].click(
|
697 |
+
lambda: [f"{id}: {name}" for id, name in available_classes_list if id in common_objects_ids],
|
698 |
outputs=image_components['image_class_filter']
|
699 |
)
|
700 |
|
701 |
# Video Input Type Change Handler
|
702 |
video_components['video_input_type'].change(
|
703 |
+
fn=lambda input_type: [
|
704 |
+
# Show/hide file upload
|
705 |
+
gr.update(visible=(input_type == "upload")),
|
706 |
+
# Show/hide URL input
|
707 |
+
gr.update(visible=(input_type == "url"))
|
708 |
+
],
|
709 |
+
inputs=[video_components['video_input_type']],
|
710 |
+
outputs=[video_components['video_input'], video_components['video_url_input']]
|
711 |
)
|
712 |
|
713 |
# Image Detect Button Click Handler
|
714 |
image_components['image_detect_btn'].click(
|
715 |
fn=handle_image_upload_fn,
|
716 |
inputs=[
|
717 |
+
image_components['image_input'],
|
718 |
+
image_components['image_model_dropdown'],
|
719 |
+
image_components['image_confidence'],
|
720 |
+
image_components['image_class_filter'],
|
721 |
+
image_components['use_llm'],
|
722 |
image_components['use_landmark_detection']
|
723 |
],
|
724 |
outputs=[
|
725 |
+
image_components['image_result_image'],
|
726 |
+
image_components['image_result_text'],
|
727 |
+
image_components['image_stats_json'],
|
728 |
image_components['image_plot_output'],
|
729 |
+
image_components['image_scene_description_html'],
|
730 |
+
image_components['image_llm_description'],
|
731 |
+
image_components['image_activities_list'],
|
732 |
+
image_components['image_safety_list'],
|
733 |
image_components['image_zones_json'],
|
734 |
image_components['image_lighting_info']
|
735 |
]
|
736 |
)
|
737 |
|
738 |
+
# Video Process Button Click Handler
|
739 |
video_components['video_process_btn'].click(
|
740 |
+
fn=handle_video_upload_fn,
|
741 |
+
inputs=[
|
742 |
+
video_components['video_input'],
|
743 |
+
video_components['video_url_input'],
|
744 |
+
video_components['video_input_type'],
|
745 |
+
video_components['video_model_dropdown'],
|
746 |
+
video_components['video_confidence'],
|
747 |
+
video_components['video_process_interval']
|
748 |
],
|
749 |
+
outputs=[
|
750 |
+
video_components['video_output'],
|
751 |
+
video_components['video_summary_text'],
|
752 |
+
video_components['video_stats_json']
|
753 |
]
|
754 |
)
|
video_processor.py
CHANGED
@@ -2,345 +2,550 @@ import cv2
|
|
2 |
import os
|
3 |
import tempfile
|
4 |
import uuid
|
5 |
-
|
|
|
6 |
import numpy as np
|
|
|
7 |
from typing import Dict, List, Tuple, Any, Optional
|
8 |
-
import time
|
9 |
from collections import defaultdict
|
|
|
|
|
10 |
|
11 |
-
from image_processor import ImageProcessor
|
12 |
-
from evaluation_metrics import EvaluationMetrics
|
13 |
-
from scene_analyzer import SceneAnalyzer
|
14 |
from detection_model import DetectionModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
class VideoProcessor:
|
17 |
"""
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
20 |
"""
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
self.
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
"""
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
Args:
|
41 |
-
video_path
|
42 |
-
model_name
|
43 |
-
confidence_threshold
|
44 |
-
process_interval
|
45 |
-
|
46 |
-
|
47 |
Returns:
|
48 |
-
Tuple[Optional[str], str,
|
49 |
"""
|
50 |
if not video_path or not os.path.exists(video_path):
|
51 |
print(f"Error: Video file not found at {video_path}")
|
52 |
-
return None, "
|
53 |
-
|
54 |
-
print(f"Starting video
|
55 |
start_time = time.time()
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
cap = cv2.VideoCapture(video_path)
|
58 |
if not cap.isOpened():
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
fps = cap.get(cv2.CAP_PROP_FPS)
|
64 |
-
if fps <= 0: # Handle case where fps is not available or invalid
|
65 |
-
fps = 30 # Assume a default fps
|
66 |
-
print(f"Warning: Could not get valid FPS for video. Assuming {fps} FPS.")
|
67 |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
68 |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
next_object_id = 0 # 下一個可用的物體ID
|
80 |
-
tracking_threshold = 0.6 # 相同物體的IoU
|
81 |
-
object_colors = {} # 每個被追蹤的物體分配固定顏色
|
82 |
-
|
83 |
-
# Setup Output Video
|
84 |
-
output_filename = f"processed_{uuid.uuid4().hex}_{os.path.basename(video_path)}"
|
85 |
-
temp_dir = tempfile.gettempdir() # Use system's temp directory
|
86 |
output_path = os.path.join(temp_dir, output_filename)
|
87 |
-
# Ensure the output path has a compatible extension (like .mp4)
|
88 |
if not output_path.lower().endswith(('.mp4', '.avi', '.mov')):
|
89 |
output_path += ".mp4"
|
90 |
-
|
91 |
-
# Use 'mp4v' for MP4, common and well-supported
|
92 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
93 |
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
|
|
94 |
if not out.isOpened():
|
95 |
-
print(f"Error: Could not open VideoWriter for path: {output_path}")
|
96 |
cap.release()
|
97 |
-
return None,
|
|
|
98 |
print(f"Output video will be saved to: {output_path}")
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
frame_count = 0
|
101 |
processed_frame_count = 0
|
102 |
-
|
103 |
-
summary_lines = []
|
104 |
-
last_description = "Analyzing scene..." # Initial description
|
105 |
-
frame_since_last_desc = description_update_interval_frames # Trigger analysis on first processed frame
|
106 |
-
|
107 |
try:
|
108 |
while True:
|
109 |
ret, frame = cap.read()
|
110 |
if not ret:
|
111 |
-
break
|
112 |
-
|
113 |
frame_count += 1
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
# Process frame based on interval
|
118 |
if frame_count % process_interval == 0:
|
119 |
processed_frame_count += 1
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
# 1. Convert frame format BGR -> RGB -> PIL
|
125 |
try:
|
|
|
126 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
127 |
pil_image = Image.fromarray(frame_rgb)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
except Exception as e:
|
129 |
-
print(f"Error
|
130 |
-
continue
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
if not model_instance or not model_instance.is_model_loaded:
|
136 |
-
print(f"Error: Model {model_name} not loaded. Skipping frame {frame_count}.")
|
137 |
-
# Draw basic frame without annotation
|
138 |
-
cv2.putText(frame, f"Scene: {last_description[:80]}...", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 3, cv2.LINE_AA)
|
139 |
-
cv2.putText(frame, f"Scene: {last_description[:80]}...", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA)
|
140 |
-
out.write(frame)
|
141 |
-
continue
|
142 |
-
|
143 |
-
|
144 |
-
# 3. Perform detection
|
145 |
-
detection_result = model_instance.detect(pil_image) # Use PIL image
|
146 |
-
|
147 |
-
current_description_for_frame = last_description # Default to last known description
|
148 |
-
scene_analysis_result = None
|
149 |
-
stats = {}
|
150 |
-
|
151 |
-
if detection_result and hasattr(detection_result, 'boxes') and len(detection_result.boxes) > 0:
|
152 |
-
# Ensure SceneAnalyzer is ready within ImageProcessor
|
153 |
-
if not hasattr(self.image_processor, 'scene_analyzer') or self.image_processor.scene_analyzer is None:
|
154 |
-
print("Initializing SceneAnalyzer...")
|
155 |
-
# Pass class names from the current detection result
|
156 |
-
self.image_processor.scene_analyzer = SceneAnalyzer(class_names=detection_result.names)
|
157 |
-
elif self.image_processor.scene_analyzer.class_names is None:
|
158 |
-
# Update class names if they were missing
|
159 |
-
self.image_processor.scene_analyzer.class_names = detection_result.names
|
160 |
-
if hasattr(self.image_processor.scene_analyzer, 'spatial_analyzer'):
|
161 |
-
self.image_processor.scene_analyzer.spatial_analyzer.class_names = detection_result.names
|
162 |
-
|
163 |
-
|
164 |
-
# 4. Perform Scene Analysis (periodically)
|
165 |
-
if frame_since_last_desc >= description_update_interval_frames:
|
166 |
-
print(f"Analyzing scene at frame {frame_count} (threshold: {description_update_interval_frames} frames)...")
|
167 |
-
# Pass lighting_info=None for now, as it's disabled for performance
|
168 |
-
scene_analysis_result = self.image_processor.analyze_scene(detection_result, lighting_info=None)
|
169 |
-
current_description_for_frame = scene_analysis_result.get("description", last_description)
|
170 |
-
last_description = current_description_for_frame # Cache the new description
|
171 |
-
frame_since_last_desc = 0 # Reset counter
|
172 |
-
|
173 |
-
# 5. Calculate Statistics for this frame
|
174 |
-
stats = EvaluationMetrics.calculate_basic_stats(detection_result)
|
175 |
-
stats['frame_number'] = frame_count # Add frame number to stats
|
176 |
-
all_stats.append(stats)
|
177 |
-
|
178 |
-
# 6. Draw annotations
|
179 |
-
names = detection_result.names
|
180 |
-
boxes = detection_result.boxes.xyxy.cpu().numpy()
|
181 |
-
classes = detection_result.boxes.cls.cpu().numpy().astype(int)
|
182 |
-
confs = detection_result.boxes.conf.cpu().numpy()
|
183 |
-
|
184 |
-
def calculate_iou(box1, box2):
|
185 |
-
"""Calculate Intersection IOU value"""
|
186 |
-
x1_1, y1_1, x2_1, y2_1 = box1
|
187 |
-
x1_2, y1_2, x2_2, y2_2 = box2
|
188 |
-
|
189 |
-
xi1 = max(x1_1, x1_2)
|
190 |
-
yi1 = max(y1_1, y1_2)
|
191 |
-
xi2 = min(x2_1, x2_2)
|
192 |
-
yi2 = min(y2_1, y2_2)
|
193 |
-
|
194 |
-
inter_area = max(0, xi2 - xi1) * max(0, yi2 - yi1)
|
195 |
-
box1_area = (x2_1 - x1_1) * (y2_1 - y1_1)
|
196 |
-
box2_area = (x2_2 - x1_2) * (y2_2 - y1_2)
|
197 |
-
|
198 |
-
union_area = box1_area + box2_area - inter_area
|
199 |
-
|
200 |
-
return inter_area / union_area if union_area > 0 else 0
|
201 |
-
|
202 |
-
# 處理當前幀中的所有檢測
|
203 |
-
current_detected_objects = {}
|
204 |
-
|
205 |
-
for box, cls_id, conf in zip(boxes, classes, confs):
|
206 |
-
x1, y1, x2, y2 = map(int, box)
|
207 |
-
|
208 |
-
# 查找最匹配的已追蹤物體
|
209 |
-
best_match_id = None
|
210 |
-
best_match_iou = 0
|
211 |
-
|
212 |
-
for obj_id, (old_box, old_cls_id, _) in last_detected_objects.items():
|
213 |
-
if old_cls_id == cls_id: # 同一類別才比較
|
214 |
-
iou = calculate_iou(box, old_box)
|
215 |
-
if iou > tracking_threshold and iou > best_match_iou:
|
216 |
-
best_match_id = obj_id
|
217 |
-
best_match_iou = iou
|
218 |
-
|
219 |
-
# 如果找到匹配,使用現有ID;否則分配新ID
|
220 |
-
if best_match_id is not None:
|
221 |
-
obj_id = best_match_id
|
222 |
-
else:
|
223 |
-
obj_id = next_object_id
|
224 |
-
next_object_id += 1
|
225 |
-
|
226 |
-
# 使用更明顯的顏色
|
227 |
-
bright_colors = [
|
228 |
-
(0, 0, 255), # red
|
229 |
-
(0, 255, 0), # green
|
230 |
-
(255, 0, 0), # blue
|
231 |
-
(0, 255, 255), # yellow
|
232 |
-
(255, 0, 255), # purple
|
233 |
-
(255, 128, 0), # orange
|
234 |
-
(128, 0, 255) # purple
|
235 |
-
]
|
236 |
-
object_colors[obj_id] = bright_colors[obj_id % len(bright_colors)]
|
237 |
-
|
238 |
-
# update tracking info
|
239 |
-
current_detected_objects[obj_id] = (box, cls_id, conf)
|
240 |
-
|
241 |
-
color = object_colors.get(obj_id, (0, 255, 0)) # default is green
|
242 |
-
label = f"{names.get(cls_id, 'Unknown')}-{obj_id}: {conf:.2f}"
|
243 |
-
|
244 |
-
# 平滑化邊界框:如果是已知物體,與上一幀位置平均
|
245 |
-
if obj_id in last_detected_objects:
|
246 |
-
old_box, _, _ = last_detected_objects[obj_id]
|
247 |
-
old_x1, old_y1, old_x2, old_y2 = map(int, old_box)
|
248 |
-
# 平滑係數
|
249 |
-
alpha = 0.7 # current weight
|
250 |
-
beta = 0.3 # history weight
|
251 |
-
|
252 |
-
x1 = int(alpha * x1 + beta * old_x1)
|
253 |
-
y1 = int(alpha * y1 + beta * old_y1)
|
254 |
-
x2 = int(alpha * x2 + beta * old_x2)
|
255 |
-
y2 = int(alpha * y2 + beta * old_y2)
|
256 |
-
|
257 |
-
# draw box and label
|
258 |
-
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
|
259 |
-
# add text
|
260 |
-
(w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 2)
|
261 |
-
cv2.rectangle(frame, (x1, y1 - h - 10), (x1 + w, y1 - 10), color, -1)
|
262 |
-
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1, cv2.LINE_AA)
|
263 |
-
|
264 |
-
# update tracking info
|
265 |
-
last_detected_objects = current_detected_objects.copy()
|
266 |
-
|
267 |
-
|
268 |
-
# Draw the current scene description on the frame
|
269 |
-
cv2.putText(frame, f"Scene: {current_description_for_frame[:80]}...", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 3, cv2.LINE_AA) # Black outline
|
270 |
-
cv2.putText(frame, f"Scene: {current_description_for_frame[:80]}...", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA) # White text
|
271 |
-
|
272 |
-
# Write the frame (annotated or original) to the output video
|
273 |
-
# Draw last known description if this frame wasn't processed
|
274 |
-
if not current_frame_annotated:
|
275 |
-
cv2.putText(frame, f"Scene: {last_description[:80]}...", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 3, cv2.LINE_AA)
|
276 |
-
cv2.putText(frame, f"Scene: {last_description[:80]}...", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA)
|
277 |
-
|
278 |
-
out.write(frame) # Write frame to output file
|
279 |
-
|
280 |
except Exception as e:
|
281 |
-
print(f"Error during video processing
|
282 |
-
import traceback
|
283 |
traceback.print_exc()
|
284 |
-
summary_lines.append(f"An error occurred during processing: {e}")
|
285 |
finally:
|
286 |
-
# Release resources
|
287 |
cap.release()
|
288 |
out.release()
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
"
|
305 |
-
|
306 |
-
|
307 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
}
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
object_cumulative_counts[obj_name] = 0
|
325 |
-
object_cumulative_counts[obj_name] += count_in_frame
|
326 |
-
|
327 |
-
# Max concurrent count
|
328 |
-
if obj_name not in object_max_concurrent_counts:
|
329 |
-
object_max_concurrent_counts[obj_name] = 0
|
330 |
-
# Update the max count if the current frame's count is higher
|
331 |
-
object_max_concurrent_counts[obj_name] = max(object_max_concurrent_counts[obj_name], count_in_frame)
|
332 |
-
|
333 |
-
# Add sorted results to the final dictionary
|
334 |
-
aggregated_stats["cumulative_detections"] = dict(sorted(object_cumulative_counts.items(), key=lambda item: item[1], reverse=True))
|
335 |
-
aggregated_stats["max_concurrent_detections"] = dict(sorted(object_max_concurrent_counts.items(), key=lambda item: item[1], reverse=True))
|
336 |
-
|
337 |
-
# Calculate average objects per processed frame
|
338 |
-
if processed_frame_count > 0:
|
339 |
-
aggregated_stats["avg_objects_per_processed_frame"] = round(total_detected_in_processed / processed_frame_count, 2)
|
340 |
-
|
341 |
-
summary_text = "\n".join(summary_lines)
|
342 |
-
print("Generated Summary:\n", summary_text)
|
343 |
-
print("Aggregated Stats (Revised):\n", aggregated_stats) # Print the revised stats
|
344 |
-
|
345 |
-
# Return the potentially updated output_path
|
346 |
-
return output_path, summary_text, aggregated_stats
|
|
|
2 |
import os
|
3 |
import tempfile
|
4 |
import uuid
|
5 |
+
import time
|
6 |
+
import traceback
|
7 |
import numpy as np
|
8 |
+
from PIL import Image
|
9 |
from typing import Dict, List, Tuple, Any, Optional
|
|
|
10 |
from collections import defaultdict
|
11 |
+
from dataclasses import dataclass
|
12 |
+
import math
|
13 |
|
|
|
|
|
|
|
14 |
from detection_model import DetectionModel
|
15 |
+
from evaluation_metrics import EvaluationMetrics
|
16 |
+
|
17 |
+
@dataclass
|
18 |
+
class ObjectRecord:
|
19 |
+
"""物體記錄數據結構"""
|
20 |
+
class_name: str
|
21 |
+
first_seen_time: float
|
22 |
+
last_seen_time: float
|
23 |
+
total_detections: int
|
24 |
+
peak_count_in_frame: int
|
25 |
+
confidence_avg: float
|
26 |
+
|
27 |
+
def get_duration(self) -> float:
|
28 |
+
"""獲取物體在影片中的持續時間"""
|
29 |
+
return self.last_seen_time - self.first_seen_time
|
30 |
+
|
31 |
+
def format_time(self, seconds: float) -> str:
|
32 |
+
"""格式化時間顯示"""
|
33 |
+
minutes = int(seconds // 60)
|
34 |
+
secs = int(seconds % 60)
|
35 |
+
if minutes > 0:
|
36 |
+
return f"{minutes}m{secs:02d}s"
|
37 |
+
return f"{secs}s"
|
38 |
|
39 |
class VideoProcessor:
|
40 |
"""
|
41 |
+
專注於實用統計分析的視頻處理器:
|
42 |
+
- 準確的物體計數和識別
|
43 |
+
- 物體出現時間分析
|
44 |
+
- 檢測品質評估
|
45 |
+
- 活動密度統計
|
46 |
"""
|
47 |
+
|
48 |
+
def __init__(self):
|
49 |
+
"""初始化視頻處理器"""
|
50 |
+
self.detection_models: Dict[str, DetectionModel] = {}
|
51 |
+
|
52 |
+
# 分析參數
|
53 |
+
self.spatial_cluster_threshold = 100 # 像素距離閾值,用於合併重複檢測
|
54 |
+
self.confidence_filter_threshold = 0.1 # 最低信心度過濾
|
55 |
+
|
56 |
+
# 統計數據收集
|
57 |
+
self.frame_detections = [] # 每幀檢測結果
|
58 |
+
self.object_timeline = defaultdict(list) # 物體時間線記錄
|
59 |
+
self.frame_timestamps = [] # 幀時間戳記錄
|
60 |
+
|
61 |
+
def get_or_create_model(self, model_name: str, confidence_threshold: float) -> DetectionModel:
|
62 |
+
"""獲取或創建檢測模型實例"""
|
63 |
+
model_key = f"{model_name}_{confidence_threshold}"
|
64 |
+
|
65 |
+
if model_key not in self.detection_models:
|
66 |
+
try:
|
67 |
+
model = DetectionModel(model_name, confidence_threshold)
|
68 |
+
self.detection_models[model_key] = model
|
69 |
+
print(f"Loaded detection model: {model_name} with confidence {confidence_threshold}")
|
70 |
+
except Exception as e:
|
71 |
+
print(f"Error loading model {model_name}: {e}")
|
72 |
+
raise
|
73 |
+
|
74 |
+
return self.detection_models[model_key]
|
75 |
+
|
76 |
+
def cluster_detections_by_position(self, detections: List[Dict], threshold: float = 100) -> List[Dict]:
|
77 |
+
"""根據位置聚類檢測結果,合併相近的重複檢測"""
|
78 |
+
if not detections:
|
79 |
+
return []
|
80 |
+
|
81 |
+
# 按物體類別分組進行聚類處理
|
82 |
+
class_groups = defaultdict(list)
|
83 |
+
for det in detections:
|
84 |
+
class_groups[det['class_name']].append(det)
|
85 |
+
|
86 |
+
clustered_results = []
|
87 |
+
|
88 |
+
for class_name, class_detections in class_groups.items():
|
89 |
+
if len(class_detections) == 1:
|
90 |
+
clustered_results.extend(class_detections)
|
91 |
+
continue
|
92 |
+
|
93 |
+
# 執行空間聚類算法
|
94 |
+
clusters = []
|
95 |
+
used = set()
|
96 |
+
|
97 |
+
for i, det1 in enumerate(class_detections):
|
98 |
+
if i in used:
|
99 |
+
continue
|
100 |
+
|
101 |
+
cluster = [det1]
|
102 |
+
used.add(i)
|
103 |
+
|
104 |
+
# 計算檢測框中心點
|
105 |
+
x1_center = (det1['bbox'][0] + det1['bbox'][2]) / 2
|
106 |
+
y1_center = (det1['bbox'][1] + det1['bbox'][3]) / 2
|
107 |
+
|
108 |
+
# 查找相近的檢測結果
|
109 |
+
for j, det2 in enumerate(class_detections):
|
110 |
+
if j in used:
|
111 |
+
continue
|
112 |
+
|
113 |
+
x2_center = (det2['bbox'][0] + det2['bbox'][2]) / 2
|
114 |
+
y2_center = (det2['bbox'][1] + det2['bbox'][3]) / 2
|
115 |
+
|
116 |
+
distance = math.sqrt((x1_center - x2_center)**2 + (y1_center - y2_center)**2)
|
117 |
+
|
118 |
+
if distance < threshold:
|
119 |
+
cluster.append(det2)
|
120 |
+
used.add(j)
|
121 |
+
|
122 |
+
clusters.append(cluster)
|
123 |
+
|
124 |
+
# 為每個聚類生成代表性檢測結果
|
125 |
+
for cluster in clusters:
|
126 |
+
best_detection = max(cluster, key=lambda x: x['confidence'])
|
127 |
+
avg_confidence = sum(det['confidence'] for det in cluster) / len(cluster)
|
128 |
+
best_detection['confidence'] = avg_confidence
|
129 |
+
best_detection['cluster_size'] = len(cluster)
|
130 |
+
clustered_results.append(best_detection)
|
131 |
+
|
132 |
+
return clustered_results
|
133 |
+
|
134 |
+
def analyze_frame_detections(self, detections: Any, timestamp: float, class_names: Dict[int, str]):
|
135 |
+
"""分析單幀的檢測結果並更新統計記錄"""
|
136 |
+
if not hasattr(detections, 'boxes') or len(detections.boxes) == 0:
|
137 |
+
self.frame_detections.append([])
|
138 |
+
self.frame_timestamps.append(timestamp)
|
139 |
+
return
|
140 |
+
|
141 |
+
# extract detected data
|
142 |
+
boxes = detections.boxes.xyxy.cpu().numpy()
|
143 |
+
classes = detections.boxes.cls.cpu().numpy().astype(int)
|
144 |
+
confidences = detections.boxes.conf.cpu().numpy()
|
145 |
+
|
146 |
+
# 轉換為統一的檢測格式
|
147 |
+
frame_detections = []
|
148 |
+
for box, cls_id, conf in zip(boxes, classes, confidences):
|
149 |
+
if conf >= self.confidence_filter_threshold:
|
150 |
+
frame_detections.append({
|
151 |
+
'bbox': tuple(box),
|
152 |
+
'class_id': cls_id,
|
153 |
+
'class_name': class_names.get(cls_id, f'class_{cls_id}'),
|
154 |
+
'confidence': conf,
|
155 |
+
'timestamp': timestamp
|
156 |
+
})
|
157 |
+
|
158 |
+
# 為了避免有重複偵測, 用空間聚類
|
159 |
+
clustered_detections = self.cluster_detections_by_position(
|
160 |
+
frame_detections, self.spatial_cluster_threshold
|
161 |
+
)
|
162 |
+
|
163 |
+
# record results
|
164 |
+
self.frame_detections.append(clustered_detections)
|
165 |
+
self.frame_timestamps.append(timestamp)
|
166 |
+
|
167 |
+
# 更新物體時間線記錄
|
168 |
+
for detection in clustered_detections:
|
169 |
+
class_name = detection['class_name']
|
170 |
+
self.object_timeline[class_name].append({
|
171 |
+
'timestamp': timestamp,
|
172 |
+
'confidence': detection['confidence'],
|
173 |
+
'bbox': detection['bbox']
|
174 |
+
})
|
175 |
+
|
176 |
+
def generate_object_statistics(self, fps: float) -> Dict[str, ObjectRecord]:
|
177 |
+
"""生成物體統計數據"""
|
178 |
+
object_stats = {}
|
179 |
+
|
180 |
+
for class_name, timeline in self.object_timeline.items():
|
181 |
+
if not timeline:
|
182 |
+
continue
|
183 |
+
|
184 |
+
# 計算基本時間統計
|
185 |
+
timestamps = [entry['timestamp'] for entry in timeline]
|
186 |
+
confidences = [entry['confidence'] for entry in timeline]
|
187 |
+
|
188 |
+
first_seen = min(timestamps)
|
189 |
+
last_seen = max(timestamps)
|
190 |
+
total_detections = len(timeline)
|
191 |
+
avg_confidence = sum(confidences) / len(confidences)
|
192 |
+
|
193 |
+
# 計算每個時間點的物體數量以確定峰值
|
194 |
+
frame_counts = defaultdict(int)
|
195 |
+
for entry in timeline:
|
196 |
+
frame_timestamp = entry['timestamp']
|
197 |
+
frame_counts[frame_timestamp] += 1
|
198 |
+
|
199 |
+
peak_count = max(frame_counts.values()) if frame_counts else 1
|
200 |
+
|
201 |
+
# 創建物體記錄
|
202 |
+
object_stats[class_name] = ObjectRecord(
|
203 |
+
class_name=class_name,
|
204 |
+
first_seen_time=first_seen,
|
205 |
+
last_seen_time=last_seen,
|
206 |
+
total_detections=total_detections,
|
207 |
+
peak_count_in_frame=peak_count,
|
208 |
+
confidence_avg=avg_confidence
|
209 |
+
)
|
210 |
+
|
211 |
+
return object_stats
|
212 |
+
|
213 |
+
def analyze_object_density(self, object_stats: Dict[str, ObjectRecord], video_duration: float) -> Dict[str, Any]:
|
214 |
+
"""分析物體密度和活動模式"""
|
215 |
+
total_objects = sum(record.peak_count_in_frame for record in object_stats.values())
|
216 |
+
objects_per_minute = (total_objects / video_duration) * 60 if video_duration > 0 else 0
|
217 |
+
|
218 |
+
# 分析每30秒時間段的活動分布
|
219 |
+
time_segments = defaultdict(int)
|
220 |
+
segment_duration = 30
|
221 |
+
|
222 |
+
for detections, timestamp in zip(self.frame_detections, self.frame_timestamps):
|
223 |
+
segment = int(timestamp // segment_duration) * segment_duration
|
224 |
+
time_segments[segment] += len(detections)
|
225 |
+
|
226 |
+
# 辨識活動高峰時段
|
227 |
+
peak_segments = []
|
228 |
+
if time_segments:
|
229 |
+
max_activity = max(time_segments.values())
|
230 |
+
threshold = max_activity * 0.8 # 80%活動量代表高度活躍
|
231 |
+
|
232 |
+
for segment, activity in time_segments.items():
|
233 |
+
if activity >= threshold:
|
234 |
+
peak_segments.append({
|
235 |
+
'start_time': segment,
|
236 |
+
'end_time': min(segment + segment_duration, video_duration),
|
237 |
+
'activity_count': activity,
|
238 |
+
'description': f"{segment}s-{min(segment + segment_duration, video_duration):.0f}s"
|
239 |
+
})
|
240 |
+
|
241 |
+
return {
|
242 |
+
'total_objects_detected': total_objects,
|
243 |
+
'objects_per_minute': round(objects_per_minute, 2),
|
244 |
+
'video_duration_seconds': video_duration,
|
245 |
+
'peak_activity_periods': peak_segments,
|
246 |
+
'activity_distribution': {str(k): v for k, v in time_segments.items()}
|
247 |
+
}
|
248 |
+
|
249 |
+
def analyze_quality_metrics(self, object_stats: Dict[str, ObjectRecord]) -> Dict[str, Any]:
|
250 |
+
"""分析檢測品質指標"""
|
251 |
+
all_confidences = []
|
252 |
+
class_confidence_stats = {}
|
253 |
+
|
254 |
+
# 收集所有置信度數據進行分析
|
255 |
+
for class_name, record in object_stats.items():
|
256 |
+
class_confidences = []
|
257 |
+
for detection_data in self.object_timeline[class_name]:
|
258 |
+
conf = detection_data['confidence']
|
259 |
+
all_confidences.append(conf)
|
260 |
+
class_confidences.append(conf)
|
261 |
+
|
262 |
+
# 計算各類別的置信度統計
|
263 |
+
if class_confidences:
|
264 |
+
class_confidence_stats[class_name] = {
|
265 |
+
'average_confidence': round(np.mean(class_confidences), 3),
|
266 |
+
'min_confidence': round(np.min(class_confidences), 3),
|
267 |
+
'max_confidence': round(np.max(class_confidences), 3),
|
268 |
+
'confidence_stability': round(1 - np.std(class_confidences), 3),
|
269 |
+
'detection_count': len(class_confidences)
|
270 |
+
}
|
271 |
+
|
272 |
+
# 計算整體品質指標
|
273 |
+
if all_confidences:
|
274 |
+
overall_confidence = np.mean(all_confidences)
|
275 |
+
confidence_std = np.std(all_confidences)
|
276 |
+
|
277 |
+
# 品質等級評估
|
278 |
+
if overall_confidence > 0.8 and confidence_std < 0.1:
|
279 |
+
quality_grade = "excellent"
|
280 |
+
elif overall_confidence > 0.6 and confidence_std < 0.2:
|
281 |
+
quality_grade = "good"
|
282 |
+
elif overall_confidence > 0.4:
|
283 |
+
quality_grade = "fair"
|
284 |
+
else:
|
285 |
+
quality_grade = "poor"
|
286 |
+
|
287 |
+
quality_analysis = f"Detection quality: {quality_grade} (avg confidence: {overall_confidence:.3f})"
|
288 |
+
else:
|
289 |
+
overall_confidence = 0
|
290 |
+
confidence_std = 0
|
291 |
+
quality_grade = "no_data"
|
292 |
+
quality_analysis = "No detection data available for quality analysis"
|
293 |
+
|
294 |
+
return {
|
295 |
+
'overall_confidence': round(overall_confidence, 3),
|
296 |
+
'confidence_stability': round(1 - confidence_std, 3),
|
297 |
+
'quality_grade': quality_grade,
|
298 |
+
'class_confidence_breakdown': class_confidence_stats,
|
299 |
+
'total_detections_analyzed': len(all_confidences),
|
300 |
+
'quality_analysis': quality_analysis
|
301 |
+
}
|
302 |
+
|
303 |
+
def generate_timeline_analysis(self, object_stats: Dict[str, ObjectRecord], video_duration: float) -> Dict[str, Any]:
|
304 |
+
"""生成時間線分析報告"""
|
305 |
+
timeline_analysis = {
|
306 |
+
'video_duration_seconds': video_duration,
|
307 |
+
'object_appearances': {},
|
308 |
+
'timeline_summary': []
|
309 |
+
}
|
310 |
+
|
311 |
+
# 分析每個物體的出現的時序
|
312 |
+
for class_name, record in object_stats.items():
|
313 |
+
timeline_analysis['object_appearances'][class_name] = {
|
314 |
+
'first_appearance': record.format_time(record.first_seen_time),
|
315 |
+
'first_appearance_seconds': round(record.first_seen_time, 1),
|
316 |
+
'last_seen': record.format_time(record.last_seen_time),
|
317 |
+
'last_seen_seconds': round(record.last_seen_time, 1),
|
318 |
+
'duration_in_video': record.format_time(record.get_duration()),
|
319 |
+
'duration_seconds': round(record.get_duration(), 1),
|
320 |
+
'estimated_count': record.peak_count_in_frame,
|
321 |
+
'detection_confidence': round(record.confidence_avg, 3)
|
322 |
+
}
|
323 |
+
|
324 |
+
# timeline summary
|
325 |
+
if object_stats:
|
326 |
+
sorted_objects = sorted(object_stats.values(), key=lambda x: x.first_seen_time)
|
327 |
+
|
328 |
+
for i, record in enumerate(sorted_objects):
|
329 |
+
if record.first_seen_time < 2.0:
|
330 |
+
summary = f"{record.peak_count_in_frame} {record.class_name}(s) present from the beginning"
|
331 |
+
else:
|
332 |
+
summary = f"{record.peak_count_in_frame} {record.class_name}(s) first appeared at {record.format_time(record.first_seen_time)}"
|
333 |
+
|
334 |
+
timeline_analysis['timeline_summary'].append(summary)
|
335 |
+
|
336 |
+
return timeline_analysis
|
337 |
+
|
338 |
+
def draw_simple_annotations(self, frame: np.ndarray, detections: List[Dict]) -> np.ndarray:
|
339 |
+
"""��視頻幀上繪製檢測標註"""
|
340 |
+
annotated_frame = frame.copy()
|
341 |
+
|
342 |
+
# 不同物體類別分配顏色
|
343 |
+
colors = {
|
344 |
+
'person': (0, 255, 0), # green
|
345 |
+
'car': (255, 0, 0), # blue
|
346 |
+
'truck': (0, 0, 255), # red
|
347 |
+
'bus': (255, 255, 0), # 青色
|
348 |
+
'bicycle': (255, 0, 255), # purple
|
349 |
+
'motorcycle': (0, 255, 255) # yellow
|
350 |
+
}
|
351 |
+
|
352 |
+
# 繪製每個檢測結果
|
353 |
+
for detection in detections:
|
354 |
+
x1, y1, x2, y2 = map(int, detection['bbox'])
|
355 |
+
class_name = detection['class_name']
|
356 |
+
confidence = detection['confidence']
|
357 |
+
|
358 |
+
color = colors.get(class_name, (128, 128, 128)) # set gray to default color
|
359 |
+
|
360 |
+
# 繪製邊界框
|
361 |
+
cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), color, 2)
|
362 |
+
|
363 |
+
# 準備標籤文字
|
364 |
+
label = f"{class_name}: {confidence:.2f}"
|
365 |
+
if 'cluster_size' in detection and detection['cluster_size'] > 1:
|
366 |
+
label += f" (merged: {detection['cluster_size']})"
|
367 |
+
|
368 |
+
# 繪製標籤背景和文字
|
369 |
+
(w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)
|
370 |
+
cv2.rectangle(annotated_frame, (x1, y1 - h - 10), (x1 + w, y1), color, -1)
|
371 |
+
cv2.putText(annotated_frame, label, (x1, y1 - 5),
|
372 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
|
373 |
+
|
374 |
+
return annotated_frame
|
375 |
+
|
376 |
+
def _ensure_string_keys(self, data):
|
377 |
+
"""確保所有字典鍵值都轉換為字串格式以支援JSON序列化"""
|
378 |
+
if isinstance(data, dict):
|
379 |
+
return {str(key): self._ensure_string_keys(value) for key, value in data.items()}
|
380 |
+
elif isinstance(data, list):
|
381 |
+
return [self._ensure_string_keys(item) for item in data]
|
382 |
+
else:
|
383 |
+
return data
|
384 |
+
|
385 |
+
def process_video(self,
|
386 |
+
video_path: str,
|
387 |
+
model_name: str,
|
388 |
+
confidence_threshold: float,
|
389 |
+
process_interval: int = 10) -> Tuple[Optional[str], Dict[str, Any]]:
|
390 |
"""
|
391 |
+
處理視頻文件,執行物體檢測和統計分析
|
392 |
+
|
|
|
393 |
Args:
|
394 |
+
video_path: 視頻文件路徑
|
395 |
+
model_name: YOLO模型名稱
|
396 |
+
confidence_threshold: 置信度閾值
|
397 |
+
process_interval: 處理間隔(每N幀處理一次)
|
398 |
+
|
|
|
399 |
Returns:
|
400 |
+
Tuple[Optional[str], Dict[str, Any]]: (輸出視頻路徑, 分析結果)
|
401 |
"""
|
402 |
if not video_path or not os.path.exists(video_path):
|
403 |
print(f"Error: Video file not found at {video_path}")
|
404 |
+
return None, {"error": "Video file not found"}
|
405 |
+
|
406 |
+
print(f"Starting focused video analysis: {video_path}")
|
407 |
start_time = time.time()
|
408 |
+
|
409 |
+
# 重置處理狀態
|
410 |
+
self.frame_detections.clear()
|
411 |
+
self.object_timeline.clear()
|
412 |
+
self.frame_timestamps.clear()
|
413 |
+
|
414 |
+
# 開啟視頻文件
|
415 |
cap = cv2.VideoCapture(video_path)
|
416 |
if not cap.isOpened():
|
417 |
+
return None, {"error": "Could not open video file"}
|
418 |
+
|
419 |
+
# 取得視頻基本屬性
|
420 |
+
fps = cap.get(cv2.CAP_PROP_FPS) or 30.0
|
|
|
|
|
|
|
|
|
421 |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
422 |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
423 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
424 |
+
video_duration = total_frames / fps
|
425 |
+
|
426 |
+
print(f"Video properties: {width}x{height} @ {fps:.2f} FPS")
|
427 |
+
print(f"Duration: {video_duration:.1f}s, Total frames: {total_frames}")
|
428 |
+
print(f"Processing every {process_interval} frames")
|
429 |
+
|
430 |
+
# 設定輸出視頻文件
|
431 |
+
output_filename = f"analyzed_{uuid.uuid4().hex}_{os.path.basename(video_path)}"
|
432 |
+
temp_dir = tempfile.gettempdir()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
433 |
output_path = os.path.join(temp_dir, output_filename)
|
|
|
434 |
if not output_path.lower().endswith(('.mp4', '.avi', '.mov')):
|
435 |
output_path += ".mp4"
|
436 |
+
|
|
|
437 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
438 |
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
439 |
+
|
440 |
if not out.isOpened():
|
|
|
441 |
cap.release()
|
442 |
+
return None, {"error": "Could not create output video file"}
|
443 |
+
|
444 |
print(f"Output video will be saved to: {output_path}")
|
445 |
+
|
446 |
+
# 載入檢測模型
|
447 |
+
try:
|
448 |
+
detection_model = self.get_or_create_model(model_name, confidence_threshold)
|
449 |
+
except Exception as e:
|
450 |
+
cap.release()
|
451 |
+
out.release()
|
452 |
+
return None, {"error": f"Failed to load detection model: {str(e)}"}
|
453 |
+
|
454 |
+
# 主要視頻處理循環
|
455 |
frame_count = 0
|
456 |
processed_frame_count = 0
|
457 |
+
|
|
|
|
|
|
|
|
|
458 |
try:
|
459 |
while True:
|
460 |
ret, frame = cap.read()
|
461 |
if not ret:
|
462 |
+
break
|
463 |
+
|
464 |
frame_count += 1
|
465 |
+
timestamp = frame_count / fps
|
466 |
+
|
467 |
+
# 根據處理間隔決定是否分析此幀
|
|
|
468 |
if frame_count % process_interval == 0:
|
469 |
processed_frame_count += 1
|
470 |
+
|
471 |
+
if processed_frame_count % 5 == 0:
|
472 |
+
print(f"Processing frame {frame_count}/{total_frames} ({timestamp:.1f}s)")
|
473 |
+
|
|
|
474 |
try:
|
475 |
+
# 執行物體檢測
|
476 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
477 |
pil_image = Image.fromarray(frame_rgb)
|
478 |
+
detections = detection_model.detect(pil_image)
|
479 |
+
|
480 |
+
# 分析檢測結果
|
481 |
+
class_names = detections.names if hasattr(detections, 'names') else {}
|
482 |
+
self.analyze_frame_detections(detections, timestamp, class_names)
|
483 |
+
|
484 |
+
# 繪製檢測標註
|
485 |
+
current_detections = self.frame_detections[-1] if self.frame_detections else []
|
486 |
+
frame = self.draw_simple_annotations(frame, current_detections)
|
487 |
+
|
488 |
except Exception as e:
|
489 |
+
print(f"Error processing frame {frame_count}: {e}")
|
490 |
+
continue
|
491 |
+
|
492 |
+
# 寫入處理後的幀到輸出視頻
|
493 |
+
out.write(frame)
|
494 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
495 |
except Exception as e:
|
496 |
+
print(f"Error during video processing: {e}")
|
|
|
497 |
traceback.print_exc()
|
|
|
498 |
finally:
|
|
|
499 |
cap.release()
|
500 |
out.release()
|
501 |
+
|
502 |
+
# 生成最終分析結果
|
503 |
+
processing_time = time.time() - start_time
|
504 |
+
|
505 |
+
# 執行各項統計分析
|
506 |
+
object_stats = self.generate_object_statistics(fps)
|
507 |
+
object_density = self.analyze_object_density(object_stats, video_duration)
|
508 |
+
quality_metrics = self.analyze_quality_metrics(object_stats)
|
509 |
+
timeline_analysis = self.generate_timeline_analysis(object_stats, video_duration)
|
510 |
+
|
511 |
+
# 計算基本統計數據
|
512 |
+
total_unique_objects = sum(record.peak_count_in_frame for record in object_stats.values())
|
513 |
+
|
514 |
+
# 組織分析結果
|
515 |
+
analysis_results = {
|
516 |
+
"processing_info": {
|
517 |
+
"processing_time_seconds": round(processing_time, 2),
|
518 |
+
"total_frames": frame_count,
|
519 |
+
"frames_analyzed": processed_frame_count,
|
520 |
+
"processing_interval": process_interval,
|
521 |
+
"video_duration_seconds": round(video_duration, 2),
|
522 |
+
"fps": fps
|
523 |
+
},
|
524 |
+
"object_summary": {
|
525 |
+
"total_unique_objects_detected": total_unique_objects,
|
526 |
+
"object_types_found": len(object_stats),
|
527 |
+
"detailed_counts": {
|
528 |
+
name: record.peak_count_in_frame
|
529 |
+
for name, record in object_stats.items()
|
530 |
+
}
|
531 |
+
},
|
532 |
+
"timeline_analysis": timeline_analysis,
|
533 |
+
"analytics": {
|
534 |
+
"object_density": object_density,
|
535 |
+
"quality_metrics": quality_metrics
|
536 |
}
|
537 |
+
}
|
538 |
+
|
539 |
+
# 確保所有字典鍵值都是字串格式
|
540 |
+
analysis_results = self._ensure_string_keys(analysis_results)
|
541 |
+
|
542 |
+
# 驗證輸出文件
|
543 |
+
if not os.path.exists(output_path) or os.path.getsize(output_path) == 0:
|
544 |
+
print(f"Warning: Output video file was not created properly")
|
545 |
+
return None, analysis_results
|
546 |
+
|
547 |
+
print(f"Video processing completed in {processing_time:.2f} seconds")
|
548 |
+
print(f"Found {total_unique_objects} total objects across {len(object_stats)} categories")
|
549 |
+
print(f"Quality grade: {quality_metrics['quality_grade']}")
|
550 |
+
|
551 |
+
return output_path, analysis_results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|