Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,747 Bytes
3172319 e6a18b7 3172319 e6a18b7 3172319 e6a18b7 3172319 e6a18b7 3172319 e6a18b7 3172319 e6a18b7 3172319 e6a18b7 3172319 e6a18b7 3172319 4d1f920 e6a18b7 3172319 e6a18b7 3172319 e6a18b7 3172319 e6a18b7 4d1f920 3172319 e6a18b7 3172319 e6a18b7 3172319 e6a18b7 3172319 e6a18b7 4d1f920 e6a18b7 4d1f920 e6a18b7 3172319 e6a18b7 3172319 e6a18b7 3172319 e6a18b7 4d1f920 e6a18b7 3172319 e6a18b7 3172319 e6a18b7 3172319 e6a18b7 4d1f920 e6a18b7 4d1f920 e6a18b7 4d1f920 e6a18b7 3172319 e6a18b7 3172319 e6a18b7 3172319 e6a18b7 3172319 e6a18b7 3172319 e6a18b7 3172319 e6a18b7 3172319 e6a18b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
import numpy as np
import cv2
import logging
import traceback
from typing import Dict, Any, Optional
from configuration_manager import ConfigurationManager
from feature_extractor import FeatureExtractor
from indoor_outdoor_classifier import IndoorOutdoorClassifier
from lighting_condition_analyzer import LightingConditionAnalyzer
class LightingAnalyzer:
"""
Comprehensive lighting analysis system facade that coordinates feature extraction,
indoor/outdoor classification, and lighting condition determination.
此class是一個總窗口,主要匯總各式光線分析相關的class
This facade class maintains the original interface while internally delegating
work to specialized components for improved maintainability and modularity.
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
"""
Initialize the lighting analyzer with configuration.
Args:
config: Optional configuration dictionary. If None, uses default configuration.
"""
self.logger = self._setup_logger()
try:
# Initialize configuration manager
self.config_manager = ConfigurationManager()
# Override default configuration if provided
if config is not None:
self._update_configuration(config)
# Initialize specialized components
self.feature_extractor = FeatureExtractor(self.config_manager)
self.indoor_outdoor_classifier = IndoorOutdoorClassifier(self.config_manager)
self.lighting_condition_analyzer = LightingConditionAnalyzer(self.config_manager)
# Legacy configuration access for backward compatibility
self.config = self.config_manager.get_legacy_config_dict()
self.logger.info("LightingAnalyzer initialized successfully")
except Exception as e:
self.logger.error(f"Error initializing LightingAnalyzer: {str(e)}")
self.logger.error(f"Traceback: {traceback.format_exc()}")
raise
def _setup_logger(self) -> logging.Logger:
"""Set up logger for lighting analysis operations."""
logger = logging.getLogger(f"{__name__}.LightingAnalyzer")
if not logger.handlers:
handler = logging.StreamHandler()
formatter = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel(logging.INFO)
return logger
def _update_configuration(self, config: Dict[str, Any]) -> None:
"""
Update configuration manager with provided configuration dictionary.
Args:
config: Configuration dictionary to update existing configuration.
"""
try:
# Update configuration through the manager's internal method
self.config_manager._update_from_dict(config)
self.logger.debug("Configuration updated successfully")
except Exception as e:
self.logger.warning(f"Error updating configuration: {str(e)}")
self.logger.warning("Continuing with default configuration")
def analyze(self, image, places365_info: Optional[Dict] = None) -> Dict[str, Any]:
"""
Analyze lighting conditions of an image.
This is the main entry point that maintains compatibility with the original interface
while leveraging the new modular architecture internally.
Args:
image: Input image (numpy array or PIL Image).
places365_info: Optional Places365 classification information containing
scene type, confidence, attributes, and indoor/outdoor classification.
Returns:
Dictionary containing comprehensive lighting analysis results including:
- time_of_day: Specific lighting condition classification
- confidence: Confidence score for the classification
- is_indoor: Boolean indicating indoor/outdoor classification
- indoor_probability: Probability score for indoor classification
- brightness: Brightness analysis metrics
- color_info: Color characteristic analysis
- texture_info: Texture and gradient analysis
- structure_info: Structural feature analysis
- diagnostics: Detailed diagnostic information (if enabled)
"""
try:
self.logger.debug("Starting comprehensive lighting analysis")
# Step 1: Validate and preprocess input image
processed_image = self._preprocess_image(image)
if processed_image is None:
return self._get_error_result("Invalid image input")
# Step 2: Extract comprehensive features
self.logger.debug("Extracting image features")
features = self.feature_extractor.extract_features(processed_image)
if not features or "avg_brightness" not in features:
return self._get_error_result("Feature extraction failed")
# Step 3: Classify indoor/outdoor with Places365 integration
self.logger.debug("Performing indoor/outdoor classification")
indoor_outdoor_result = self.indoor_outdoor_classifier.classify(
features, places365_info
)
is_indoor = indoor_outdoor_result["is_indoor"]
indoor_probability = indoor_outdoor_result["indoor_probability"]
# Step 4: Determine specific lighting conditions
self.logger.debug(f"Analyzing lighting conditions for {'indoor' if is_indoor else 'outdoor'} scene")
lighting_result = self.lighting_condition_analyzer.analyze_lighting_conditions(
features, is_indoor, places365_info
)
# Step 5: Consolidate comprehensive results
result = self._consolidate_analysis_results(
lighting_result, indoor_outdoor_result, features
)
self.logger.info(f"Analysis complete: {result['time_of_day']} "
f"({'indoor' if result['is_indoor'] else 'outdoor'}) "
f"confidence: {result['confidence']:.3f}")
return result
except Exception as e:
self.logger.error(f"Error in lighting analysis: {str(e)}")
self.logger.error(f"Traceback: {traceback.format_exc()}")
return self._get_error_result(str(e))
def _preprocess_image(self, image) -> Optional[np.ndarray]:
"""
Preprocess input image to ensure consistent format for analysis.
Args:
image: Input image in various possible formats.
Returns:
Preprocessed image as RGB numpy array, or None if preprocessing failed.
"""
try:
# Convert to numpy array if needed
if not isinstance(image, np.ndarray):
image_np = np.array(image)
else:
image_np = image.copy()
# Validate basic image properties
if len(image_np.shape) < 2:
self.logger.error("Image must have at least 2 dimensions")
return None
height, width = image_np.shape[:2]
if height == 0 or width == 0:
self.logger.error(f"Invalid image dimensions: {height}x{width}")
return None
# Handle different color formats and convert to RGB
if len(image_np.shape) == 2:
# 灰階 to RGB
image_rgb = cv2.cvtColor(image_np, cv2.COLOR_GRAY2RGB)
elif image_np.shape[2] == 3:
# Handle BGR vs RGB
if not isinstance(image, np.ndarray):
# PIL images are typically RGB
image_rgb = image_np
else:
# OpenCV arrays are typically BGR, convert to RGB
image_rgb = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
elif image_np.shape[2] == 4:
# RGBA to RGB
if not isinstance(image, np.ndarray):
# PIL RGBA to RGB
image_rgb = cv2.cvtColor(image_np, cv2.COLOR_RGBA2RGB)
else:
# OpenCV BGRA to RGB
image_rgb = cv2.cvtColor(image_np, cv2.COLOR_BGRA2RGB)
else:
self.logger.error(f"Unsupported image format with shape: {image_np.shape}")
return None
# Ensure uint8 data type
if image_rgb.dtype != np.uint8:
if image_rgb.dtype in [np.float32, np.float64]:
# Assume normalized float values
if image_rgb.max() <= 1.0:
image_rgb = (image_rgb * 255).astype(np.uint8)
else:
image_rgb = image_rgb.astype(np.uint8)
else:
image_rgb = image_rgb.astype(np.uint8)
self.logger.debug(f"Preprocessed image: {image_rgb.shape}, dtype: {image_rgb.dtype}")
return image_rgb
except Exception as e:
self.logger.error(f"Error preprocessing image: {str(e)}")
return None
def _consolidate_analysis_results(self, lighting_result: Dict[str, Any],
indoor_outdoor_result: Dict[str, Any],
features: Dict[str, Any]) -> Dict[str, Any]:
"""
Consolidate results from all analysis components into final output format.
Args:
lighting_result: Results from lighting condition analysis.
indoor_outdoor_result: Results from indoor/outdoor classification.
features: Extracted image features.
Returns:
Consolidated analysis results in the expected output format.
"""
# Extract core results
time_of_day = lighting_result["time_of_day"]
confidence = lighting_result["confidence"]
is_indoor = indoor_outdoor_result["is_indoor"]
indoor_probability = indoor_outdoor_result["indoor_probability"]
# Organize brightness information
brightness_info = {
"average": float(features.get("avg_brightness", 0.0)),
"std_dev": float(features.get("brightness_std", 0.0)),
"dark_ratio": float(features.get("dark_pixel_ratio", 0.0)),
"bright_ratio": float(features.get("bright_pixel_ratio", 0.0))
}
# Organize color information
color_info = {
"blue_ratio": float(features.get("blue_ratio", 0.0)),
"sky_like_blue_ratio": float(features.get("sky_like_blue_ratio", 0.0)),
"yellow_orange_ratio": float(features.get("yellow_orange_ratio", 0.0)),
"gray_ratio": float(features.get("gray_ratio", 0.0)),
"avg_saturation": float(features.get("avg_saturation", 0.0)),
"sky_region_brightness_ratio": float(features.get("sky_region_brightness_ratio", 1.0)),
"sky_region_saturation": float(features.get("sky_region_saturation", 0.0)),
"sky_region_blue_dominance": float(features.get("sky_region_blue_dominance", 0.0)),
"color_atmosphere": features.get("color_atmosphere", "neutral"),
"warm_ratio": float(features.get("warm_ratio", 0.0)),
"cool_ratio": float(features.get("cool_ratio", 0.0))
}
# Organize texture information
texture_info = {
"gradient_ratio_vertical_horizontal": float(features.get("gradient_ratio_vertical_horizontal", 0.0)),
"top_region_texture_complexity": float(features.get("top_region_texture_complexity", 0.0)),
"shadow_clarity_score": float(features.get("shadow_clarity_score", 0.5))
}
# Organize structure information
structure_info = {
"ceiling_likelihood": float(features.get("ceiling_likelihood", 0.0)),
"boundary_clarity": float(features.get("boundary_clarity", 0.0)),
"openness_top_edge": float(features.get("openness_top_edge", 0.5))
}
# Compile final result
result = {
"time_of_day": time_of_day,
"confidence": float(confidence),
"is_indoor": is_indoor,
"indoor_probability": float(indoor_probability),
"brightness": brightness_info,
"color_info": color_info,
"texture_info": texture_info,
"structure_info": structure_info
}
# Add diagnostic information if enabled
if self.config_manager.algorithm_parameters.include_diagnostics:
diagnostics = {}
# Combine diagnostics from all components
if "diagnostics" in lighting_result:
diagnostics["lighting_diagnostics"] = lighting_result["diagnostics"]
if "diagnostics" in indoor_outdoor_result:
diagnostics["indoor_outdoor_diagnostics"] = indoor_outdoor_result["diagnostics"]
if "feature_contributions" in indoor_outdoor_result:
diagnostics["feature_contributions"] = indoor_outdoor_result["feature_contributions"]
result["diagnostics"] = diagnostics
return result
def _get_error_result(self, error_message: str) -> Dict[str, Any]:
"""
Generate standardized error result format.
Args:
error_message: Description of the error that occurred.
Returns:
Dictionary containing error result with safe default values.
"""
return {
"time_of_day": "unknown",
"confidence": 0.0,
"is_indoor": False,
"indoor_probability": 0.5,
"brightness": {
"average": 100.0,
"std_dev": 50.0,
"dark_ratio": 0.0,
"bright_ratio": 0.0
},
"color_info": {
"blue_ratio": 0.0,
"sky_like_blue_ratio": 0.0,
"yellow_orange_ratio": 0.0,
"gray_ratio": 0.0,
"avg_saturation": 100.0,
"sky_region_brightness_ratio": 1.0,
"sky_region_saturation": 0.0,
"sky_region_blue_dominance": 0.0,
"color_atmosphere": "neutral",
"warm_ratio": 0.0,
"cool_ratio": 0.0
},
"texture_info": {
"gradient_ratio_vertical_horizontal": 1.0,
"top_region_texture_complexity": 0.5,
"shadow_clarity_score": 0.5
},
"structure_info": {
"ceiling_likelihood": 0.0,
"boundary_clarity": 0.0,
"openness_top_edge": 0.5
},
"error": error_message
}
def get_configuration(self) -> Dict[str, Any]:
"""
Get current configuration as dictionary for backward compatibility.
Returns:
Dictionary containing all current configuration parameters.
"""
return self.config_manager.get_legacy_config_dict()
def update_configuration(self, config_updates: Dict[str, Any]) -> None:
"""
Update configuration parameters.
Args:
config_updates: Dictionary containing configuration parameters to update.
"""
try:
self.config_manager._update_from_dict(config_updates)
# Update legacy config reference
self.config = self.config_manager.get_legacy_config_dict()
self.logger.info("Configuration updated successfully")
except Exception as e:
self.logger.error(f"Error updating configuration: {str(e)}")
raise
def validate_configuration(self) -> bool:
"""
Validate current configuration for logical consistency.
Returns:
True if configuration is valid, False otherwise.
"""
try:
validation_errors = self.config_manager.validate_configuration()
if validation_errors:
self.logger.error("Configuration validation failed:")
for error in validation_errors:
self.logger.error(f" - {error}")
return False
self.logger.info("Configuration validation passed")
return True
except Exception as e:
self.logger.error(f"Error during configuration validation: {str(e)}")
return False
def save_configuration(self, filepath: str) -> None:
"""
Save current configuration to file.
Args:
filepath: Path where to save the configuration file.
"""
try:
self.config_manager.save_to_file(filepath)
self.logger.info(f"Configuration saved to {filepath}")
except Exception as e:
self.logger.error(f"Error saving configuration: {str(e)}")
raise
def load_configuration(self, filepath: str) -> None:
"""
Load configuration from file.
Args:
filepath: Path to the configuration file to load.
"""
try:
self.config_manager.load_from_file(filepath)
# Update legacy config reference
self.config = self.config_manager.get_legacy_config_dict()
self.logger.info(f"Configuration loaded from {filepath}")
except Exception as e:
self.logger.error(f"Error loading configuration: {str(e)}")
raise
|