File size: 24,378 Bytes
e6a18b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
import re
import logging
import traceback
import numpy as np
from typing import Dict, List, Tuple, Optional, Any
from PIL import Image

from clip_zero_shot_classifier import CLIPZeroShotClassifier
from landmark_activities import LANDMARK_ACTIVITIES
from landmark_data import ALL_LANDMARKS


class LandmarkProcessingManager:
    """
    負責處理所有地標相關的檢測和處理邏輯,包括未知物體的地標識別、
    地標物體的創建和驗證,以及地標引用的清理。
    """

    def __init__(self, enable_landmark: bool = True, use_clip: bool = True):
        """
        初始化地標處理管理器。

        Args:
            enable_landmark: 是否啟用地標檢測功能
            use_clip: 是否啟用 CLIP 分析功能
        """
        self.logger = logging.getLogger(__name__)
        self.enable_landmark = enable_landmark
        self.use_clip = use_clip

        # 載入地標相關數據
        self.landmark_activities = {}
        self.all_landmarks = {}
        self._load_landmark_data()

        # 地標分類器將按需初始化
        self.landmark_classifier = None

    def _load_landmark_data(self):
        """載入地標相關的數據結構。"""
        try:
            self.landmark_activities = LANDMARK_ACTIVITIES
            self.logger.info("Loaded LANDMARK_ACTIVITIES successfully")
        except ImportError as e:
            self.logger.warning(f"Failed to load LANDMARK_ACTIVITIES: {e}")
            self.landmark_activities = {}

        try:
            self.all_landmarks = ALL_LANDMARKS
            self.logger.info("Loaded ALL_LANDMARKS successfully")
        except ImportError as e:
            self.logger.warning(f"Failed to load ALL_LANDMARKS: {e}")
            self.all_landmarks = {}

    def set_landmark_classifier(self, landmark_classifier):
        """
        設置地標分類器實例。

        Args:
            landmark_classifier: CLIPZeroShotClassifier 實例
        """
        self.landmark_classifier = landmark_classifier

    def process_unknown_objects(self, detection_result, detected_objects, clip_analyzer=None):
        """
        對 YOLO 未能識別或信心度低的物體進行地標檢測。

        Args:
            detection_result: YOLO 檢測結果
            detected_objects: 已識別的物體列表
            clip_analyzer: CLIP 分析器實例(用於按需初始化地標分類器)

        Returns:
            tuple: (更新後的物體列表, 地標物體列表)
        """
        if (not self.enable_landmark or not self.use_clip or
            not hasattr(self, 'use_landmark_detection') or not self.use_landmark_detection):
            # 未啟用地標識別時,確保返回的物體列表中不包含任何地標物體
            cleaned_objects = [obj for obj in detected_objects if not obj.get("is_landmark", False)]
            return cleaned_objects, []

        try:
            # 獲取原始圖像
            original_image = None
            if detection_result is not None and hasattr(detection_result, 'orig_img'):
                original_image = detection_result.orig_img

            # 檢查原始圖像是否存在
            if original_image is None:
                self.logger.warning("Original image not available for landmark detection")
                return detected_objects, []

            # 確保原始圖像為 PIL 格式或可轉換為 PIL 格式
            if not isinstance(original_image, Image.Image):
                if isinstance(original_image, np.ndarray):
                    try:
                        if original_image.ndim == 3 and original_image.shape[2] == 4:  # RGBA
                            original_image = original_image[:, :, :3]  # 轉換為 RGB
                        if original_image.ndim == 2:  # 灰度圖
                            original_image = Image.fromarray(original_image).convert("RGB")
                        else:  # 假設為 RGB 或 BGR
                            original_image = Image.fromarray(original_image)

                        if hasattr(original_image, 'mode') and original_image.mode == 'BGR':  # 從 OpenCV 明確將 BGR 轉換為 RGB
                            original_image = original_image.convert('RGB')
                    except Exception as e:
                        self.logger.warning(f"Error converting image for landmark detection: {e}")
                        return detected_objects, []
                else:
                    self.logger.warning(f"Cannot process image of type {type(original_image)}")
                    return detected_objects, []

            # 獲取圖像維度
            if isinstance(original_image, np.ndarray):
                h, w = original_image.shape[:2]
            elif isinstance(original_image, Image.Image):
                w, h = original_image.size
            else:
                self.logger.warning(f"Unable to determine image dimensions for type {type(original_image)}")
                return detected_objects, []

            # 收集可能含有地標的區域
            candidate_boxes = []
            low_conf_boxes = []

            # 即使沒有 YOLO 檢測到的物體,也嘗試進行更詳細的地標分析
            if len(detected_objects) == 0:
                # 創建一個包含整個圖像的框
                full_image_box = [0, 0, w, h]
                low_conf_boxes.append(full_image_box)
                candidate_boxes.append((full_image_box, "full_image"))

                # 加入網格分析以增加檢測成功率
                grid_size = 2  # 2x2 網格
                for i in range(grid_size):
                    for j in range(grid_size):
                        # 創建網格框
                        grid_box = [
                            j * w / grid_size,
                            i * h / grid_size,
                            (j + 1) * w / grid_size,
                            (i + 1) * h / grid_size
                        ]
                        low_conf_boxes.append(grid_box)
                        candidate_boxes.append((grid_box, "grid"))

                # 創建更大的中心框(覆蓋中心 70% 區域)
                center_box = [
                    w * 0.15, h * 0.15,
                    w * 0.85, h * 0.85
                ]
                low_conf_boxes.append(center_box)
                candidate_boxes.append((center_box, "center"))

                self.logger.info("No YOLO detections, attempting detailed landmark analysis with multiple regions")
            else:
                try:
                    # 獲取原始 YOLO 檢測結果中的低置信度物體
                    if (hasattr(detection_result, 'boxes') and
                        hasattr(detection_result.boxes, 'xyxy') and
                        hasattr(detection_result.boxes, 'conf') and
                        hasattr(detection_result.boxes, 'cls')):
                        all_boxes = (detection_result.boxes.xyxy.cpu().numpy()
                                   if hasattr(detection_result.boxes.xyxy, 'cpu')
                                   else detection_result.boxes.xyxy)
                        all_confs = (detection_result.boxes.conf.cpu().numpy()
                                   if hasattr(detection_result.boxes.conf, 'cpu')
                                   else detection_result.boxes.conf)
                        all_cls = (detection_result.boxes.cls.cpu().numpy()
                                 if hasattr(detection_result.boxes.cls, 'cpu')
                                 else detection_result.boxes.cls)

                        # 收集低置信度區域和可能含有地標的區域(如建築物)
                        for i, (box, conf, cls) in enumerate(zip(all_boxes, all_confs, all_cls)):
                            is_low_conf = conf < 0.4 and conf > 0.1

                            # 根據物體類別 ID 識別建築物 - 使用通用分類
                            common_building_classes = [11, 12, 13, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65]  # 常見建築類別 ID
                            is_building = int(cls) in common_building_classes

                            # 計算相對面積 - 大物體
                            is_large_object = (box[2] - box[0]) * (box[3] - box[1]) > (0.1 * w * h)

                            if is_low_conf or is_building:
                                # 確保 box 是一個有效的數組或列表
                                if isinstance(box, (list, tuple, np.ndarray)) and len(box) >= 4:
                                    low_conf_boxes.append(box)
                                    if is_large_object:
                                        candidate_boxes.append((box, "building" if is_building else "low_conf"))
                except Exception as e:
                    self.logger.error(f"Error processing YOLO detections: {e}")
                    traceback.print_exc()

            # 按需初始化地標分類器
            if not self.landmark_classifier:
                if clip_analyzer and hasattr(clip_analyzer, 'get_clip_instance'):
                    try:
                        self.logger.info("Initializing landmark classifier for process_unknown_objects")
                        model, preprocess, device = clip_analyzer.get_clip_instance()
                        self.landmark_classifier = CLIPZeroShotClassifier(device=device)
                    except Exception as e:
                        self.logger.error(f"Error initializing landmark classifier: {e}")
                        return detected_objects, []
                else:
                    self.logger.warning("landmark_classifier not available and cannot be initialized")
                    return detected_objects, []

            # 使用智能地標搜索
            landmark_results = None
            try:
                # 確保有有效的框
                if not low_conf_boxes:
                    # 如果沒有低置信度框,添加全圖
                    low_conf_boxes.append([0, 0, w, h])

                landmark_results = self.landmark_classifier.intelligent_landmark_search(
                    original_image,
                    yolo_boxes=low_conf_boxes,
                    base_threshold=0.25
                )
            except Exception as e:
                self.logger.error(f"Error in intelligent_landmark_search: {e}")
                traceback.print_exc()
                return detected_objects, []

            # 處理識別結果
            landmark_objects = []

            # 如果有效的地標結果
            if landmark_results and landmark_results.get("is_landmark_scene", False):
                for landmark_info in landmark_results.get("detected_landmarks", []):
                    try:
                        # 使用 landmark_classifier 的閾值判斷
                        base_threshold = 0.25  # 基礎閾值

                        # 獲取地標類型並設定閾值
                        landmark_type = "architectural"  # 預設類型
                        type_threshold = 0.5  # 預設閾值

                        # 優先使用 landmark_classifier
                        if (hasattr(self.landmark_classifier, '_determine_landmark_type') and
                            landmark_info.get("landmark_id")):
                            landmark_type = self.landmark_classifier._determine_landmark_type(landmark_info.get("landmark_id"))
                            type_threshold = getattr(self.landmark_classifier, 'landmark_type_thresholds', {}).get(landmark_type, 0.5)
                        # 否則使用本地方法
                        elif hasattr(self, '_determine_landmark_type'):
                            landmark_type = self._determine_landmark_type(landmark_info.get("landmark_id", ""))
                            # 依據地標類型調整閾值
                            if landmark_type == "skyscraper":
                                type_threshold = 0.4
                            elif landmark_type == "natural":
                                type_threshold = 0.6
                        # 或者直接從地標 ID 推斷
                        else:
                            landmark_id = landmark_info.get("landmark_id", "").lower()
                            if any(term in landmark_id for term in ["mountain", "canyon", "waterfall", "lake", "river", "natural"]):
                                landmark_type = "natural"
                                type_threshold = 0.6
                            elif any(term in landmark_id for term in ["skyscraper", "building", "tower", "tall"]):
                                landmark_type = "skyscraper"
                                type_threshold = 0.4
                            elif any(term in landmark_id for term in ["monument", "memorial", "statue", "historical"]):
                                landmark_type = "monument"
                                type_threshold = 0.5

                        effective_threshold = base_threshold * (type_threshold / 0.5)

                        # 如果置信度足夠高
                        if landmark_info.get("confidence", 0) > effective_threshold:
                            # 獲取邊界框
                            if "box" in landmark_info:
                                box = landmark_info["box"]
                            else:
                                # 如果沒有邊界框,使用整個圖像的 90% 區域
                                margin_x, margin_y = w * 0.05, h * 0.05
                                box = [margin_x, margin_y, w - margin_x, h - margin_y]

                            # 計算中心點和其他必要信息
                            center_x = (box[0] + box[2]) / 2
                            center_y = (box[1] + box[3]) / 2
                            norm_center_x = center_x / w if w > 0 else 0.5
                            norm_center_y = center_y / h if h > 0 else 0.5

                            # 獲取區域位置(需要 spatial_analyzer 的支持)
                            region = "center"  # 預設

                            # 創建地標物體
                            landmark_obj = {
                                "class_id": (landmark_info.get("landmark_id", "")[:15]
                                           if isinstance(landmark_info.get("landmark_id", ""), str)
                                           else "-100"),  # 截斷過長的 ID
                                "class_name": landmark_info.get("landmark_name", "Unknown Landmark"),
                                "confidence": landmark_info.get("confidence", 0.0),
                                "box": box,
                                "center": (center_x, center_y),
                                "normalized_center": (norm_center_x, norm_center_y),
                                "size": (box[2] - box[0], box[3] - box[1]),
                                "normalized_size": (
                                    (box[2] - box[0]) / w if w > 0 else 0,
                                    (box[3] - box[1]) / h if h > 0 else 0
                                ),
                                "area": (box[2] - box[0]) * (box[3] - box[1]),
                                "normalized_area": (
                                    (box[2] - box[0]) * (box[3] - box[1]) / (w * h) if w * h > 0 else 0
                                ),
                                "region": region,
                                "is_landmark": True,
                                "landmark_id": landmark_info.get("landmark_id", ""),
                                "location": landmark_info.get("location", "Unknown Location")
                            }

                            # 添加額外信息
                            for key in ["year_built", "architectural_style", "significance"]:
                                if key in landmark_info:
                                    landmark_obj[key] = landmark_info[key]

                            # 添加地標類型
                            landmark_obj["landmark_type"] = landmark_type

                            # 添加到檢測物體列表
                            detected_objects.append(landmark_obj)
                            landmark_objects.append(landmark_obj)
                            self.logger.info(f"Detected landmark: {landmark_info.get('landmark_name', 'Unknown')} with confidence {landmark_info.get('confidence', 0.0):.2f}")
                    except Exception as e:
                        self.logger.error(f"Error processing landmark: {e}")
                        continue

                return detected_objects, landmark_objects

            return detected_objects, []

        except Exception as e:
            self.logger.error(f"Error in landmark detection: {e}")
            traceback.print_exc()
            return detected_objects, []

    def remove_landmark_references(self, text):
        """
        從文本中移除所有地標引用。

        Args:
            text: 輸入文本

        Returns:
            str: 清除地標引用後的文本
        """
        if not text:
            return text

        try:
            # 動態收集所有地標名稱和位置
            landmark_names = []
            locations = []

            for landmark_id, info in self.all_landmarks.items():
                # 收集地標名稱及其別名
                landmark_names.append(info["name"])
                landmark_names.extend(info.get("aliases", []))

                # 收集地理位置
                if "location" in info:
                    location = info["location"]
                    locations.append(location)

                    # 處理分離的城市和國家名稱
                    parts = location.split(",")
                    if len(parts) >= 1:
                        locations.append(parts[0].strip())
                    if len(parts) >= 2:
                        locations.append(parts[1].strip())

            # 使用正則表達式動態替換所有地標名稱
            for name in landmark_names:
                if name and len(name) > 2:  # 避免過短的名稱
                    text = re.sub(r'\b' + re.escape(name) + r'\b', "tall structure", text, flags=re.IGNORECASE)

            # 動態替換所有位置引用
            for location in locations:
                if location and len(location) > 2:
                    # 替換常見位置表述模式
                    text = re.sub(r'in ' + re.escape(location), "in the urban area", text, flags=re.IGNORECASE)
                    text = re.sub(r'of ' + re.escape(location), "of the urban area", text, flags=re.IGNORECASE)
                    text = re.sub(r'\b' + re.escape(location) + r'\b', "the urban area", text, flags=re.IGNORECASE)

        except Exception as e:
            self.logger.warning(f"Error in dynamic landmark reference removal, using generic patterns: {e}")
            # 通用地標描述模式
            landmark_patterns = [
                # 地標地點模式
                (r'an iconic structure in ([A-Z][a-zA-Z\s,]+)', r'an urban structure'),
                (r'a famous (monument|tower|landmark) in ([A-Z][a-zA-Z\s,]+)', r'an urban structure'),
                (r'(the [A-Z][a-zA-Z\s]+ Tower)', r'the tower'),
                (r'(the [A-Z][a-zA-Z\s]+ Building)', r'the building'),
                (r'(the CN Tower)', r'the tower'),
                (r'([A-Z][a-zA-Z\s]+) Tower', r'tall structure'),

                # 地標位置關係模式
                (r'(centered|built|located|positioned) around the ([A-Z][a-zA-Z\s]+? (Tower|Monument|Landmark))', r'located in this area'),

                # 地標活動模式
                (r'(sightseeing|guided tours|cultural tourism) (at|around|near) (this landmark|the [A-Z][a-zA-Z\s]+)', r'\1 in this area'),

                # 一般性地標形容模式
                (r'this (famous|iconic|historic|well-known) (landmark|monument|tower|structure)', r'this urban structure'),
                (r'landmark scene', r'urban scene'),
                (r'tourist destination', r'urban area'),
                (r'tourist attraction', r'urban area')
            ]

            for pattern, replacement in landmark_patterns:
                text = re.sub(pattern, replacement, text, flags=re.IGNORECASE)

        return text

    def get_alternative_scene_type(self, landmark_scene_type, detected_objects, scene_scores):
        """
        為地標場景類型選擇適合的替代類型。

        Args:
            landmark_scene_type: 原始地標場景類型
            detected_objects: 檢測到的物體列表
            scene_scores: 所有場景類型的分數

        Returns:
            str: 適合的替代場景類型
        """
        # 1. 嘗試從現有場景分數中找出第二高的非地標場景
        landmark_types = {"tourist_landmark", "natural_landmark", "historical_monument"}
        alternative_scores = {k: v for k, v in scene_scores.items() if k not in landmark_types and v > 0.2}

        if alternative_scores:
            # 返回分數最高的非地標場景類型
            return max(alternative_scores.items(), key=lambda x: x[1])[0]

        # 2. 基於物體組合推斷場景類型
        object_counts = {}
        for obj in detected_objects:
            class_name = obj.get("class_name", "")
            if class_name not in object_counts:
                object_counts[class_name] = 0
            object_counts[class_name] += 1

        # 根據物體組合決定場景類型
        if "car" in object_counts or "truck" in object_counts or "bus" in object_counts:
            # 有車輛,可能是街道或交叉路口
            if "traffic light" in object_counts or "stop sign" in object_counts:
                return "intersection"
            else:
                return "city_street"

        if "building" in object_counts and object_counts.get("person", 0) > 0:
            # 有建築物和人,可能是商業區
            return "commercial_district"

        if object_counts.get("person", 0) > 3:
            # 多個行人,可能是行人區
            return "pedestrian_area"

        if "bench" in object_counts or "potted plant" in object_counts:
            # 有長椅或盆栽,可能是公園區域
            return "park_area"

        # 3. 根據原始地標場景類型選擇合適的替代場景
        if landmark_scene_type == "natural_landmark":
            return "outdoor_natural_area"
        elif landmark_scene_type == "historical_monument":
            return "urban_architecture"

        # 默認回退到城市街道
        return "city_street"

    def extract_landmark_specific_activities(self, landmark_objects):
        """
        從識別的地標中提取特定活動。

        Args:
            landmark_objects: 地標物體列表

        Returns:
            List[str]: 地標特定活動列表
        """
        landmark_specific_activities = []

        # 優先收集來自識別地標的特定活動
        for lm_obj in landmark_objects:
            lm_id = lm_obj.get("landmark_id")
            if lm_id and lm_id in self.landmark_activities:
                landmark_specific_activities.extend(self.landmark_activities[lm_id])

        if landmark_specific_activities:
            landmark_names = [lm.get('landmark_name', 'unknown') for lm in landmark_objects if lm.get('is_landmark', False)]
            self.logger.info(f"Added {len(landmark_specific_activities)} landmark-specific activities for {', '.join(landmark_names)}")

        return landmark_specific_activities

    def update_enable_landmark_status(self, enable_landmark: bool):
        """
        更新地標檢測的啟用狀態。

        Args:
            enable_landmark: 是否啟用地標檢測
        """
        self.enable_landmark = enable_landmark

    def update_use_landmark_detection_status(self, use_landmark_detection: bool):
        """
        更新地標檢測使用狀態。

        Args:
            use_landmark_detection: 是否使用地標檢測
        """
        self.use_landmark_detection = use_landmark_detection