Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,378 Bytes
e6a18b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
import re
import logging
import traceback
import numpy as np
from typing import Dict, List, Tuple, Optional, Any
from PIL import Image
from clip_zero_shot_classifier import CLIPZeroShotClassifier
from landmark_activities import LANDMARK_ACTIVITIES
from landmark_data import ALL_LANDMARKS
class LandmarkProcessingManager:
"""
負責處理所有地標相關的檢測和處理邏輯,包括未知物體的地標識別、
地標物體的創建和驗證,以及地標引用的清理。
"""
def __init__(self, enable_landmark: bool = True, use_clip: bool = True):
"""
初始化地標處理管理器。
Args:
enable_landmark: 是否啟用地標檢測功能
use_clip: 是否啟用 CLIP 分析功能
"""
self.logger = logging.getLogger(__name__)
self.enable_landmark = enable_landmark
self.use_clip = use_clip
# 載入地標相關數據
self.landmark_activities = {}
self.all_landmarks = {}
self._load_landmark_data()
# 地標分類器將按需初始化
self.landmark_classifier = None
def _load_landmark_data(self):
"""載入地標相關的數據結構。"""
try:
self.landmark_activities = LANDMARK_ACTIVITIES
self.logger.info("Loaded LANDMARK_ACTIVITIES successfully")
except ImportError as e:
self.logger.warning(f"Failed to load LANDMARK_ACTIVITIES: {e}")
self.landmark_activities = {}
try:
self.all_landmarks = ALL_LANDMARKS
self.logger.info("Loaded ALL_LANDMARKS successfully")
except ImportError as e:
self.logger.warning(f"Failed to load ALL_LANDMARKS: {e}")
self.all_landmarks = {}
def set_landmark_classifier(self, landmark_classifier):
"""
設置地標分類器實例。
Args:
landmark_classifier: CLIPZeroShotClassifier 實例
"""
self.landmark_classifier = landmark_classifier
def process_unknown_objects(self, detection_result, detected_objects, clip_analyzer=None):
"""
對 YOLO 未能識別或信心度低的物體進行地標檢測。
Args:
detection_result: YOLO 檢測結果
detected_objects: 已識別的物體列表
clip_analyzer: CLIP 分析器實例(用於按需初始化地標分類器)
Returns:
tuple: (更新後的物體列表, 地標物體列表)
"""
if (not self.enable_landmark or not self.use_clip or
not hasattr(self, 'use_landmark_detection') or not self.use_landmark_detection):
# 未啟用地標識別時,確保返回的物體列表中不包含任何地標物體
cleaned_objects = [obj for obj in detected_objects if not obj.get("is_landmark", False)]
return cleaned_objects, []
try:
# 獲取原始圖像
original_image = None
if detection_result is not None and hasattr(detection_result, 'orig_img'):
original_image = detection_result.orig_img
# 檢查原始圖像是否存在
if original_image is None:
self.logger.warning("Original image not available for landmark detection")
return detected_objects, []
# 確保原始圖像為 PIL 格式或可轉換為 PIL 格式
if not isinstance(original_image, Image.Image):
if isinstance(original_image, np.ndarray):
try:
if original_image.ndim == 3 and original_image.shape[2] == 4: # RGBA
original_image = original_image[:, :, :3] # 轉換為 RGB
if original_image.ndim == 2: # 灰度圖
original_image = Image.fromarray(original_image).convert("RGB")
else: # 假設為 RGB 或 BGR
original_image = Image.fromarray(original_image)
if hasattr(original_image, 'mode') and original_image.mode == 'BGR': # 從 OpenCV 明確將 BGR 轉換為 RGB
original_image = original_image.convert('RGB')
except Exception as e:
self.logger.warning(f"Error converting image for landmark detection: {e}")
return detected_objects, []
else:
self.logger.warning(f"Cannot process image of type {type(original_image)}")
return detected_objects, []
# 獲取圖像維度
if isinstance(original_image, np.ndarray):
h, w = original_image.shape[:2]
elif isinstance(original_image, Image.Image):
w, h = original_image.size
else:
self.logger.warning(f"Unable to determine image dimensions for type {type(original_image)}")
return detected_objects, []
# 收集可能含有地標的區域
candidate_boxes = []
low_conf_boxes = []
# 即使沒有 YOLO 檢測到的物體,也嘗試進行更詳細的地標分析
if len(detected_objects) == 0:
# 創建一個包含整個圖像的框
full_image_box = [0, 0, w, h]
low_conf_boxes.append(full_image_box)
candidate_boxes.append((full_image_box, "full_image"))
# 加入網格分析以增加檢測成功率
grid_size = 2 # 2x2 網格
for i in range(grid_size):
for j in range(grid_size):
# 創建網格框
grid_box = [
j * w / grid_size,
i * h / grid_size,
(j + 1) * w / grid_size,
(i + 1) * h / grid_size
]
low_conf_boxes.append(grid_box)
candidate_boxes.append((grid_box, "grid"))
# 創建更大的中心框(覆蓋中心 70% 區域)
center_box = [
w * 0.15, h * 0.15,
w * 0.85, h * 0.85
]
low_conf_boxes.append(center_box)
candidate_boxes.append((center_box, "center"))
self.logger.info("No YOLO detections, attempting detailed landmark analysis with multiple regions")
else:
try:
# 獲取原始 YOLO 檢測結果中的低置信度物體
if (hasattr(detection_result, 'boxes') and
hasattr(detection_result.boxes, 'xyxy') and
hasattr(detection_result.boxes, 'conf') and
hasattr(detection_result.boxes, 'cls')):
all_boxes = (detection_result.boxes.xyxy.cpu().numpy()
if hasattr(detection_result.boxes.xyxy, 'cpu')
else detection_result.boxes.xyxy)
all_confs = (detection_result.boxes.conf.cpu().numpy()
if hasattr(detection_result.boxes.conf, 'cpu')
else detection_result.boxes.conf)
all_cls = (detection_result.boxes.cls.cpu().numpy()
if hasattr(detection_result.boxes.cls, 'cpu')
else detection_result.boxes.cls)
# 收集低置信度區域和可能含有地標的區域(如建築物)
for i, (box, conf, cls) in enumerate(zip(all_boxes, all_confs, all_cls)):
is_low_conf = conf < 0.4 and conf > 0.1
# 根據物體類別 ID 識別建築物 - 使用通用分類
common_building_classes = [11, 12, 13, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65] # 常見建築類別 ID
is_building = int(cls) in common_building_classes
# 計算相對面積 - 大物體
is_large_object = (box[2] - box[0]) * (box[3] - box[1]) > (0.1 * w * h)
if is_low_conf or is_building:
# 確保 box 是一個有效的數組或列表
if isinstance(box, (list, tuple, np.ndarray)) and len(box) >= 4:
low_conf_boxes.append(box)
if is_large_object:
candidate_boxes.append((box, "building" if is_building else "low_conf"))
except Exception as e:
self.logger.error(f"Error processing YOLO detections: {e}")
traceback.print_exc()
# 按需初始化地標分類器
if not self.landmark_classifier:
if clip_analyzer and hasattr(clip_analyzer, 'get_clip_instance'):
try:
self.logger.info("Initializing landmark classifier for process_unknown_objects")
model, preprocess, device = clip_analyzer.get_clip_instance()
self.landmark_classifier = CLIPZeroShotClassifier(device=device)
except Exception as e:
self.logger.error(f"Error initializing landmark classifier: {e}")
return detected_objects, []
else:
self.logger.warning("landmark_classifier not available and cannot be initialized")
return detected_objects, []
# 使用智能地標搜索
landmark_results = None
try:
# 確保有有效的框
if not low_conf_boxes:
# 如果沒有低置信度框,添加全圖
low_conf_boxes.append([0, 0, w, h])
landmark_results = self.landmark_classifier.intelligent_landmark_search(
original_image,
yolo_boxes=low_conf_boxes,
base_threshold=0.25
)
except Exception as e:
self.logger.error(f"Error in intelligent_landmark_search: {e}")
traceback.print_exc()
return detected_objects, []
# 處理識別結果
landmark_objects = []
# 如果有效的地標結果
if landmark_results and landmark_results.get("is_landmark_scene", False):
for landmark_info in landmark_results.get("detected_landmarks", []):
try:
# 使用 landmark_classifier 的閾值判斷
base_threshold = 0.25 # 基礎閾值
# 獲取地標類型並設定閾值
landmark_type = "architectural" # 預設類型
type_threshold = 0.5 # 預設閾值
# 優先使用 landmark_classifier
if (hasattr(self.landmark_classifier, '_determine_landmark_type') and
landmark_info.get("landmark_id")):
landmark_type = self.landmark_classifier._determine_landmark_type(landmark_info.get("landmark_id"))
type_threshold = getattr(self.landmark_classifier, 'landmark_type_thresholds', {}).get(landmark_type, 0.5)
# 否則使用本地方法
elif hasattr(self, '_determine_landmark_type'):
landmark_type = self._determine_landmark_type(landmark_info.get("landmark_id", ""))
# 依據地標類型調整閾值
if landmark_type == "skyscraper":
type_threshold = 0.4
elif landmark_type == "natural":
type_threshold = 0.6
# 或者直接從地標 ID 推斷
else:
landmark_id = landmark_info.get("landmark_id", "").lower()
if any(term in landmark_id for term in ["mountain", "canyon", "waterfall", "lake", "river", "natural"]):
landmark_type = "natural"
type_threshold = 0.6
elif any(term in landmark_id for term in ["skyscraper", "building", "tower", "tall"]):
landmark_type = "skyscraper"
type_threshold = 0.4
elif any(term in landmark_id for term in ["monument", "memorial", "statue", "historical"]):
landmark_type = "monument"
type_threshold = 0.5
effective_threshold = base_threshold * (type_threshold / 0.5)
# 如果置信度足夠高
if landmark_info.get("confidence", 0) > effective_threshold:
# 獲取邊界框
if "box" in landmark_info:
box = landmark_info["box"]
else:
# 如果沒有邊界框,使用整個圖像的 90% 區域
margin_x, margin_y = w * 0.05, h * 0.05
box = [margin_x, margin_y, w - margin_x, h - margin_y]
# 計算中心點和其他必要信息
center_x = (box[0] + box[2]) / 2
center_y = (box[1] + box[3]) / 2
norm_center_x = center_x / w if w > 0 else 0.5
norm_center_y = center_y / h if h > 0 else 0.5
# 獲取區域位置(需要 spatial_analyzer 的支持)
region = "center" # 預設
# 創建地標物體
landmark_obj = {
"class_id": (landmark_info.get("landmark_id", "")[:15]
if isinstance(landmark_info.get("landmark_id", ""), str)
else "-100"), # 截斷過長的 ID
"class_name": landmark_info.get("landmark_name", "Unknown Landmark"),
"confidence": landmark_info.get("confidence", 0.0),
"box": box,
"center": (center_x, center_y),
"normalized_center": (norm_center_x, norm_center_y),
"size": (box[2] - box[0], box[3] - box[1]),
"normalized_size": (
(box[2] - box[0]) / w if w > 0 else 0,
(box[3] - box[1]) / h if h > 0 else 0
),
"area": (box[2] - box[0]) * (box[3] - box[1]),
"normalized_area": (
(box[2] - box[0]) * (box[3] - box[1]) / (w * h) if w * h > 0 else 0
),
"region": region,
"is_landmark": True,
"landmark_id": landmark_info.get("landmark_id", ""),
"location": landmark_info.get("location", "Unknown Location")
}
# 添加額外信息
for key in ["year_built", "architectural_style", "significance"]:
if key in landmark_info:
landmark_obj[key] = landmark_info[key]
# 添加地標類型
landmark_obj["landmark_type"] = landmark_type
# 添加到檢測物體列表
detected_objects.append(landmark_obj)
landmark_objects.append(landmark_obj)
self.logger.info(f"Detected landmark: {landmark_info.get('landmark_name', 'Unknown')} with confidence {landmark_info.get('confidence', 0.0):.2f}")
except Exception as e:
self.logger.error(f"Error processing landmark: {e}")
continue
return detected_objects, landmark_objects
return detected_objects, []
except Exception as e:
self.logger.error(f"Error in landmark detection: {e}")
traceback.print_exc()
return detected_objects, []
def remove_landmark_references(self, text):
"""
從文本中移除所有地標引用。
Args:
text: 輸入文本
Returns:
str: 清除地標引用後的文本
"""
if not text:
return text
try:
# 動態收集所有地標名稱和位置
landmark_names = []
locations = []
for landmark_id, info in self.all_landmarks.items():
# 收集地標名稱及其別名
landmark_names.append(info["name"])
landmark_names.extend(info.get("aliases", []))
# 收集地理位置
if "location" in info:
location = info["location"]
locations.append(location)
# 處理分離的城市和國家名稱
parts = location.split(",")
if len(parts) >= 1:
locations.append(parts[0].strip())
if len(parts) >= 2:
locations.append(parts[1].strip())
# 使用正則表達式動態替換所有地標名稱
for name in landmark_names:
if name and len(name) > 2: # 避免過短的名稱
text = re.sub(r'\b' + re.escape(name) + r'\b', "tall structure", text, flags=re.IGNORECASE)
# 動態替換所有位置引用
for location in locations:
if location and len(location) > 2:
# 替換常見位置表述模式
text = re.sub(r'in ' + re.escape(location), "in the urban area", text, flags=re.IGNORECASE)
text = re.sub(r'of ' + re.escape(location), "of the urban area", text, flags=re.IGNORECASE)
text = re.sub(r'\b' + re.escape(location) + r'\b', "the urban area", text, flags=re.IGNORECASE)
except Exception as e:
self.logger.warning(f"Error in dynamic landmark reference removal, using generic patterns: {e}")
# 通用地標描述模式
landmark_patterns = [
# 地標地點模式
(r'an iconic structure in ([A-Z][a-zA-Z\s,]+)', r'an urban structure'),
(r'a famous (monument|tower|landmark) in ([A-Z][a-zA-Z\s,]+)', r'an urban structure'),
(r'(the [A-Z][a-zA-Z\s]+ Tower)', r'the tower'),
(r'(the [A-Z][a-zA-Z\s]+ Building)', r'the building'),
(r'(the CN Tower)', r'the tower'),
(r'([A-Z][a-zA-Z\s]+) Tower', r'tall structure'),
# 地標位置關係模式
(r'(centered|built|located|positioned) around the ([A-Z][a-zA-Z\s]+? (Tower|Monument|Landmark))', r'located in this area'),
# 地標活動模式
(r'(sightseeing|guided tours|cultural tourism) (at|around|near) (this landmark|the [A-Z][a-zA-Z\s]+)', r'\1 in this area'),
# 一般性地標形容模式
(r'this (famous|iconic|historic|well-known) (landmark|monument|tower|structure)', r'this urban structure'),
(r'landmark scene', r'urban scene'),
(r'tourist destination', r'urban area'),
(r'tourist attraction', r'urban area')
]
for pattern, replacement in landmark_patterns:
text = re.sub(pattern, replacement, text, flags=re.IGNORECASE)
return text
def get_alternative_scene_type(self, landmark_scene_type, detected_objects, scene_scores):
"""
為地標場景類型選擇適合的替代類型。
Args:
landmark_scene_type: 原始地標場景類型
detected_objects: 檢測到的物體列表
scene_scores: 所有場景類型的分數
Returns:
str: 適合的替代場景類型
"""
# 1. 嘗試從現有場景分數中找出第二高的非地標場景
landmark_types = {"tourist_landmark", "natural_landmark", "historical_monument"}
alternative_scores = {k: v for k, v in scene_scores.items() if k not in landmark_types and v > 0.2}
if alternative_scores:
# 返回分數最高的非地標場景類型
return max(alternative_scores.items(), key=lambda x: x[1])[0]
# 2. 基於物體組合推斷場景類型
object_counts = {}
for obj in detected_objects:
class_name = obj.get("class_name", "")
if class_name not in object_counts:
object_counts[class_name] = 0
object_counts[class_name] += 1
# 根據物體組合決定場景類型
if "car" in object_counts or "truck" in object_counts or "bus" in object_counts:
# 有車輛,可能是街道或交叉路口
if "traffic light" in object_counts or "stop sign" in object_counts:
return "intersection"
else:
return "city_street"
if "building" in object_counts and object_counts.get("person", 0) > 0:
# 有建築物和人,可能是商業區
return "commercial_district"
if object_counts.get("person", 0) > 3:
# 多個行人,可能是行人區
return "pedestrian_area"
if "bench" in object_counts or "potted plant" in object_counts:
# 有長椅或盆栽,可能是公園區域
return "park_area"
# 3. 根據原始地標場景類型選擇合適的替代場景
if landmark_scene_type == "natural_landmark":
return "outdoor_natural_area"
elif landmark_scene_type == "historical_monument":
return "urban_architecture"
# 默認回退到城市街道
return "city_street"
def extract_landmark_specific_activities(self, landmark_objects):
"""
從識別的地標中提取特定活動。
Args:
landmark_objects: 地標物體列表
Returns:
List[str]: 地標特定活動列表
"""
landmark_specific_activities = []
# 優先收集來自識別地標的特定活動
for lm_obj in landmark_objects:
lm_id = lm_obj.get("landmark_id")
if lm_id and lm_id in self.landmark_activities:
landmark_specific_activities.extend(self.landmark_activities[lm_id])
if landmark_specific_activities:
landmark_names = [lm.get('landmark_name', 'unknown') for lm in landmark_objects if lm.get('is_landmark', False)]
self.logger.info(f"Added {len(landmark_specific_activities)} landmark-specific activities for {', '.join(landmark_names)}")
return landmark_specific_activities
def update_enable_landmark_status(self, enable_landmark: bool):
"""
更新地標檢測的啟用狀態。
Args:
enable_landmark: 是否啟用地標檢測
"""
self.enable_landmark = enable_landmark
def update_use_landmark_detection_status(self, use_landmark_detection: bool):
"""
更新地標檢測使用狀態。
Args:
use_landmark_detection: 是否使用地標檢測
"""
self.use_landmark_detection = use_landmark_detection
|