Spaces:
Running
on
Zero
Running
on
Zero
File size: 35,403 Bytes
e6a18b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 |
import numpy as np
import cv2
import logging
import traceback
from typing import Dict, Any, Optional
from configuration_manager import ConfigurationManager
class FeatureExtractor:
"""
Extracts comprehensive lighting and scene features from images.(主要從圖片提取光線資訊)
This class handles all basic feature computation including brightness analysis,
color characteristics, texture complexity, and structural features for
lighting analysis and scene understanding.
"""
def __init__(self, config_manager: ConfigurationManager):
"""
Initialize the feature extractor.
Args:
config_manager: Configuration manager instance for accessing thresholds.
"""
self.config_manager = config_manager
self.logger = self._setup_logger()
def _setup_logger(self) -> logging.Logger:
"""Set up logger for feature extraction operations."""
logger = logging.getLogger(f"{__name__}.FeatureExtractor")
if not logger.handlers:
handler = logging.StreamHandler()
formatter = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel(logging.INFO)
return logger
def extract_features(self, image_rgb: np.ndarray) -> Dict[str, Any]:
"""
Extract all features from an RGB image.
Args:
image_rgb: Input image as numpy array in RGB format.
Returns:
Dictionary containing all extracted features.
"""
try:
# Validate input image
if not self._validate_image(image_rgb):
return self._get_default_features()
# Get image dimensions and prepare processing parameters
height, width = image_rgb.shape[:2]
scale_factor = self._calculate_scale_factor(height, width)
# Create processed image versions
small_rgb = cv2.resize(
image_rgb,
(width // scale_factor, height // scale_factor),
interpolation=cv2.INTER_AREA
)
hsv_img = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2HSV)
gray_img = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2GRAY)
small_gray = cv2.cvtColor(small_rgb, cv2.COLOR_RGB2GRAY)
# Extract features by category
brightness_features = self.compute_brightness_features(hsv_img, height, width)
color_features = self.compute_color_features(hsv_img, height, width)
texture_features = self.compute_texture_features(small_gray, gray_img, height, width)
structure_features = self.compute_structure_features(
small_gray, gray_img, hsv_img, height, width, scale_factor
)
# Combine all features
features = {**brightness_features, **color_features, **texture_features, **structure_features}
# Add compatibility features for legacy code
legacy_features = self._compute_legacy_compatibility_features(
hsv_img, small_gray, features, scale_factor
)
features.update(legacy_features)
self.logger.debug(f"Successfully extracted {len(features)} features from image")
return features
except Exception as e:
self.logger.error(f"Error in feature extraction: {str(e)}")
self.logger.error(f"Traceback: {traceback.format_exc()}")
return self._get_default_features()
def compute_brightness_features(self, hsv_img: np.ndarray, height: int, width: int) -> Dict[str, float]:
"""
Compute brightness-related features from HSV image.
Args:
hsv_img: Image in HSV color space.
height: Image height.
width: Image width.
Returns:
Dictionary containing brightness features.
"""
try:
v_channel = hsv_img[:, :, 2] # Value channel represents brightness
# 基本的亮度統計
avg_brightness = float(np.mean(v_channel))
brightness_std = float(np.std(v_channel))
# Pixel ratio calculations
dark_threshold = self.config_manager.feature_thresholds.dark_pixel_threshold
bright_threshold = self.config_manager.feature_thresholds.bright_pixel_threshold
total_pixels = height * width
dark_pixel_ratio = float(np.sum(v_channel < dark_threshold) / total_pixels)
bright_pixel_ratio = float(np.sum(v_channel > bright_threshold) / total_pixels)
# Brightness uniformity
brightness_uniformity = 1.0 - min(1.0, brightness_std / max(avg_brightness, 1e-5))
return {
"avg_brightness": avg_brightness,
"brightness_std": brightness_std,
"dark_pixel_ratio": dark_pixel_ratio,
"bright_pixel_ratio": bright_pixel_ratio,
"brightness_uniformity": brightness_uniformity
}
except Exception as e:
self.logger.error(f"Error computing brightness features: {str(e)}")
return {
"avg_brightness": 100.0,
"brightness_std": 50.0,
"dark_pixel_ratio": 0.0,
"bright_pixel_ratio": 0.0,
"brightness_uniformity": 0.5
}
def compute_color_features(self, hsv_img: np.ndarray, height: int, width: int) -> Dict[str, Any]:
"""
Compute color-related features from HSV image.
Args:
hsv_img: Image in HSV color space.
height: Image height.
width: Image width.
Returns:
Dictionary containing color features.
"""
try:
h_channel, s_channel, v_channel = cv2.split(hsv_img)
total_pixels = height * width
# Color ratio calculations
color_features = {}
# Blue color detection (general and sky-specific)
blue_mask = ((h_channel >= 90) & (h_channel <= 140))
color_features["blue_ratio"] = float(np.sum(blue_mask) / total_pixels)
# Sky-like blue detection
ft = self.config_manager.feature_thresholds
sky_blue_mask = (
(h_channel >= ft.sky_blue_hue_min) & (h_channel <= ft.sky_blue_hue_max) &
(s_channel > ft.sky_blue_sat_min) & (v_channel > ft.sky_blue_val_min)
)
color_features["sky_like_blue_ratio"] = float(np.sum(sky_blue_mask) / total_pixels)
# Yellow-orange detection
yellow_orange_mask = ((h_channel >= 15) & (h_channel <= 45))
color_features["yellow_orange_ratio"] = float(np.sum(yellow_orange_mask) / total_pixels)
# Gray detection
gray_mask = (
(s_channel < ft.gray_sat_max) &
(v_channel > ft.gray_val_min) &
(v_channel < ft.gray_val_max)
)
color_features["gray_ratio"] = float(np.sum(gray_mask) / total_pixels)
# Saturation statistics
color_features["avg_saturation"] = float(np.mean(s_channel))
# Sky region analysis
sky_region_features = self._analyze_sky_region(h_channel, s_channel, v_channel, height)
color_features.update(sky_region_features)
# Color atmosphere analysis
atmosphere_features = self._analyze_color_atmosphere(h_channel, s_channel, total_pixels)
color_features.update(atmosphere_features)
return color_features
except Exception as e:
self.logger.error(f"Error computing color features: {str(e)}")
return self._get_default_color_features()
def compute_texture_features(self, small_gray: np.ndarray, gray_img: np.ndarray,
height: int, width: int) -> Dict[str, float]:
"""
Compute texture and gradient features.
Args:
small_gray: Downscaled grayscale image for efficient processing.
gray_img: Full-resolution grayscale image.
height: Original image height.
width: Original image width.
Returns:
Dictionary containing texture features.
"""
try:
# Compute gradients on small image for efficiency
gx = cv2.Sobel(small_gray, cv2.CV_32F, 1, 0, ksize=3)
gy = cv2.Sobel(small_gray, cv2.CV_32F, 0, 1, ksize=3)
avg_abs_gx = float(np.mean(np.abs(gx)))
avg_abs_gy = float(np.mean(np.abs(gy)))
# Gradient ratio (vertical to horizontal)
gradient_ratio_vertical_horizontal = avg_abs_gy / max(avg_abs_gx, 1e-5)
# Top region texture complexity
small_top_third_height = small_gray.shape[0] // 3
small_sky_region_gray = small_gray[:small_top_third_height, :]
if small_sky_region_gray.size > 0:
laplacian_var_sky = cv2.Laplacian(small_sky_region_gray, cv2.CV_64F).var()
top_region_texture_complexity = min(1.0, laplacian_var_sky / 1000.0)
else:
top_region_texture_complexity = 0.5
# Shadow clarity estimation
brightness_std = float(np.std(gray_img))
avg_brightness = float(np.mean(gray_img))
dark_pixel_ratio = float(np.sum(gray_img < 50) / (height * width))
if brightness_std > 60 and dark_pixel_ratio < 0.15 and avg_brightness > 100:
shadow_clarity_score = 0.7
elif brightness_std < 30 and dark_pixel_ratio > 0.1:
shadow_clarity_score = 0.3
else:
shadow_clarity_score = 0.5
# Edge density
edges_density = min(1.0, (avg_abs_gx + avg_abs_gy) / 100.0)
return {
"gradient_ratio_vertical_horizontal": gradient_ratio_vertical_horizontal,
"top_region_texture_complexity": top_region_texture_complexity,
"shadow_clarity_score": shadow_clarity_score,
"vertical_strength": avg_abs_gy,
"horizontal_strength": avg_abs_gx,
"edges_density": edges_density
}
except Exception as e:
self.logger.error(f"Error computing texture features: {str(e)}")
return {
"gradient_ratio_vertical_horizontal": 1.0,
"top_region_texture_complexity": 0.5,
"shadow_clarity_score": 0.5,
"vertical_strength": 0.0,
"horizontal_strength": 0.0,
"edges_density": 0.0
}
def compute_structure_features(self, small_gray: np.ndarray, gray_img: np.ndarray,
hsv_img: np.ndarray, height: int, width: int,
scale_factor: int) -> Dict[str, float]:
"""
Compute structural features including ceiling likelihood and boundary clarity.
Args:
small_gray: Downscaled grayscale image.
gray_img: Full-resolution grayscale image.
hsv_img: HSV image for brightness analysis.
height: Original image height.
width: Original image width.
scale_factor: Downscaling factor used.
Returns:
Dictionary containing structural features.
"""
try:
# Compute gradients
gx = cv2.Sobel(small_gray, cv2.CV_32F, 1, 0, ksize=3)
gy = cv2.Sobel(small_gray, cv2.CV_32F, 0, 1, ksize=3)
avg_abs_gx = float(np.mean(np.abs(gx)))
avg_abs_gy = float(np.mean(np.abs(gy)))
# Ceiling likelihood analysis
ceiling_features = self._analyze_ceiling_likelihood(
small_gray, hsv_img, gx, avg_abs_gx, height, scale_factor
)
# Boundary clarity analysis
boundary_clarity = self._compute_boundary_clarity(small_gray, avg_abs_gx, avg_abs_gy)
# Openness analysis
openness_top_edge = self._compute_openness_top_edge(gy, avg_abs_gy)
# Legacy compatibility features
legacy_structure = self._compute_legacy_structure_features(gray_img, height)
structure_features = {
"ceiling_likelihood": ceiling_features["ceiling_likelihood"],
"boundary_clarity": boundary_clarity,
"openness_top_edge": openness_top_edge,
**legacy_structure
}
return structure_features
except Exception as e:
self.logger.error(f"Error computing structure features: {str(e)}")
return {
"ceiling_likelihood": 0.0,
"boundary_clarity": 0.0,
"openness_top_edge": 0.5,
"ceiling_uniformity": 0.5,
"horizontal_line_ratio": 0.0
}
def _analyze_sky_region(self, h_channel: np.ndarray, s_channel: np.ndarray,
v_channel: np.ndarray, height: int) -> Dict[str, float]:
"""Analyze features specific to the sky region (top third of image)."""
try:
top_third_height = height // 3
sky_region_v = v_channel[:top_third_height, :]
sky_region_s = s_channel[:top_third_height, :]
sky_region_h = h_channel[:top_third_height, :]
if sky_region_v.size == 0:
return self._get_default_sky_features()
# Sky region brightness analysis
sky_region_avg_brightness = float(np.mean(sky_region_v))
overall_avg_brightness = float(np.mean(v_channel))
sky_region_brightness_ratio = sky_region_avg_brightness / max(overall_avg_brightness, 1e-5)
sky_region_saturation = float(np.mean(sky_region_s))
# Sky blue dominance in sky region
ft = self.config_manager.feature_thresholds
sky_region_blue_pixels = np.sum(
(sky_region_h >= ft.sky_blue_hue_min) & (sky_region_h <= ft.sky_blue_hue_max) &
(sky_region_s > ft.sky_blue_sat_min) & (sky_region_v > ft.sky_blue_val_min)
)
sky_region_blue_dominance = float(sky_region_blue_pixels / max(1, sky_region_v.size))
return {
"sky_region_brightness_ratio": sky_region_brightness_ratio,
"sky_region_saturation": sky_region_saturation,
"sky_region_blue_dominance": sky_region_blue_dominance,
"sky_brightness": sky_region_avg_brightness
}
except Exception as e:
self.logger.error(f"Error analyzing sky region: {str(e)}")
return self._get_default_sky_features()
def _analyze_color_atmosphere(self, h_channel: np.ndarray, s_channel: np.ndarray,
total_pixels: int) -> Dict[str, Any]:
"""Analyze warm/cool color atmosphere."""
try:
cr = self.config_manager.color_ranges
# Warm colors detection
warm_mask = np.zeros_like(h_channel, dtype=bool)
for h_min, h_max in cr.warm_hue_ranges:
warm_mask |= ((h_channel >= h_min) & (h_channel <= h_max))
warm_ratio = float(np.sum(warm_mask & (s_channel > 30)) / total_pixels)
# Cool colors detection
cool_mask = np.zeros_like(h_channel, dtype=bool)
for h_min, h_max in cr.cool_hue_ranges:
cool_mask |= ((h_channel >= h_min) & (h_channel <= h_max))
cool_ratio = float(np.sum(cool_mask & (s_channel > 30)) / total_pixels)
# Determine overall atmosphere
if warm_ratio > cool_ratio and warm_ratio > 0.3:
color_atmosphere = "warm"
elif cool_ratio > warm_ratio and cool_ratio > 0.3:
color_atmosphere = "cool"
else:
color_atmosphere = "neutral"
return {
"warm_ratio": warm_ratio,
"cool_ratio": cool_ratio,
"color_atmosphere": color_atmosphere
}
except Exception as e:
self.logger.error(f"Error analyzing color atmosphere: {str(e)}")
return {
"warm_ratio": 0.0,
"cool_ratio": 0.0,
"color_atmosphere": "neutral"
}
def _analyze_ceiling_likelihood(self, small_gray: np.ndarray, hsv_img: np.ndarray,
gx: np.ndarray, avg_abs_gx: float, height: int,
scale_factor: int) -> Dict[str, float]:
"""Analyze likelihood of ceiling presence."""
try:
ceiling_likelihood = 0.0
config = self.config_manager.indoor_outdoor_thresholds
# Get sky region brightness for analysis
v_channel = hsv_img[:, :, 2]
top_third_height = height // 3
sky_region_v = v_channel[:top_third_height, :]
sky_region_avg_brightness = float(np.mean(sky_region_v)) if sky_region_v.size > 0 else 0
# Get top region texture complexity
small_top_third_height = small_gray.shape[0] // 3
small_sky_region_gray = small_gray[:small_top_third_height, :]
if small_sky_region_gray.size > 0:
laplacian_var = cv2.Laplacian(small_sky_region_gray, cv2.CV_64F).var()
top_region_texture_complexity = min(1.0, laplacian_var / 1000.0)
else:
top_region_texture_complexity = 0.5
# Condition 1: Simple texture and moderate brightness
ceiling_texture_thresh = getattr(config, 'ceiling_texture_thresh', 0.4)
ceiling_brightness_min = getattr(config, 'ceiling_brightness_min', 60)
ceiling_brightness_max = getattr(config, 'ceiling_brightness_max', 230)
if (top_region_texture_complexity < ceiling_texture_thresh and
ceiling_brightness_min < sky_region_avg_brightness < ceiling_brightness_max):
ceiling_likelihood += 0.45
# Condition 2: Horizontal line strength
top_horizontal_lines_strength = float(np.mean(np.abs(gx[:small_gray.shape[0]//3, :])))
ceiling_horizontal_line_factor = getattr(config, 'ceiling_horizontal_line_factor', 1.15)
if top_horizontal_lines_strength > avg_abs_gx * ceiling_horizontal_line_factor:
ceiling_likelihood += 0.35
# Condition 3: Central bright spot (lamp detection)
center_y_sm, center_x_sm = small_gray.shape[0]//2, small_gray.shape[1]//2
lamp_check_radius_y = small_gray.shape[0] // 8
lamp_check_radius_x = small_gray.shape[1] // 8
center_region = small_gray[
max(0, center_y_sm - lamp_check_radius_y):min(small_gray.shape[0], center_y_sm + lamp_check_radius_y),
max(0, center_x_sm - lamp_check_radius_x):min(small_gray.shape[1], center_x_sm + lamp_check_radius_x)
]
if center_region.size > 0:
avg_brightness = float(np.mean(small_gray))
center_brightness = float(np.mean(center_region))
ceiling_center_bright_factor = getattr(config, 'ceiling_center_bright_factor', 1.25)
if center_brightness > avg_brightness * ceiling_center_bright_factor:
ceiling_likelihood += 0.30
# Sky dominance analysis for penalty
sky_region_blue_dominance = self._compute_sky_blue_dominance(hsv_img, height)
sky_region_brightness_ratio = sky_region_avg_brightness / max(float(np.mean(v_channel)), 1e-5)
# Penalties for strong sky signals
ceiling_max_sky_blue_thresh = getattr(config, 'ceiling_max_sky_blue_thresh', 0.08)
ceiling_max_sky_brightness_ratio = getattr(config, 'ceiling_max_sky_brightness_ratio', 1.15)
if (sky_region_blue_dominance < ceiling_max_sky_blue_thresh and
sky_region_brightness_ratio < ceiling_max_sky_brightness_ratio):
ceiling_likelihood += 0.15
# Strong sky override
sky_blue_dominance_strong_thresh = getattr(config, 'sky_blue_dominance_strong_thresh', 0.25)
sky_brightness_strong_thresh = getattr(config, 'sky_brightness_strong_thresh', 1.25)
ceiling_sky_override_factor = getattr(config, 'ceiling_sky_override_factor', 0.1)
if (sky_region_blue_dominance > sky_blue_dominance_strong_thresh and
sky_region_brightness_ratio > sky_brightness_strong_thresh):
ceiling_likelihood *= ceiling_sky_override_factor
ceiling_likelihood = min(1.0, ceiling_likelihood)
return {"ceiling_likelihood": ceiling_likelihood}
except Exception as e:
self.logger.error(f"Error analyzing ceiling likelihood: {str(e)}")
return {"ceiling_likelihood": 0.0}
def _compute_sky_blue_dominance(self, hsv_img: np.ndarray, height: int) -> float:
"""Compute blue dominance in sky region."""
try:
h_channel, s_channel, v_channel = cv2.split(hsv_img)
top_third_height = height // 3
sky_region_h = h_channel[:top_third_height, :]
sky_region_s = s_channel[:top_third_height, :]
sky_region_v = v_channel[:top_third_height, :]
if sky_region_h.size == 0:
return 0.0
ft = self.config_manager.feature_thresholds
sky_region_blue_pixels = np.sum(
(sky_region_h >= ft.sky_blue_hue_min) & (sky_region_h <= ft.sky_blue_hue_max) &
(sky_region_s > ft.sky_blue_sat_min) & (sky_region_v > ft.sky_blue_val_min)
)
return float(sky_region_blue_pixels / max(1, sky_region_h.size))
except Exception as e:
self.logger.error(f"Error computing sky blue dominance: {str(e)}")
return 0.0
def _compute_boundary_clarity(self, small_gray: np.ndarray, avg_abs_gx: float,
avg_abs_gy: float) -> float:
"""Compute boundary clarity score."""
try:
edge_width_sm = max(1, small_gray.shape[1] // 10)
edge_height_sm = max(1, small_gray.shape[0] // 10)
# Edge gradients
left_edge_grad_x = 0.0
right_edge_grad_x = 0.0
top_edge_grad_y = 0.0
if small_gray.shape[1] > edge_width_sm:
left_edge = small_gray[:, :edge_width_sm]
right_edge = small_gray[:, -edge_width_sm:]
left_edge_grad_x = float(np.mean(np.abs(cv2.Sobel(left_edge, cv2.CV_32F, 1, 0, ksize=3))))
right_edge_grad_x = float(np.mean(np.abs(cv2.Sobel(right_edge, cv2.CV_32F, 1, 0, ksize=3))))
if small_gray.shape[0] > edge_height_sm:
top_edge = small_gray[:edge_height_sm, :]
top_edge_grad_y = float(np.mean(np.abs(cv2.Sobel(top_edge, cv2.CV_32F, 0, 1, ksize=3))))
# Normalize against average gradients
boundary_clarity = (left_edge_grad_x + right_edge_grad_x + top_edge_grad_y) / (
3 * max(avg_abs_gx, avg_abs_gy, 1e-5)
)
boundary_clarity = min(1.0, boundary_clarity / 1.5)
return boundary_clarity
except Exception as e:
self.logger.error(f"Error computing boundary clarity: {str(e)}")
return 0.0
def _compute_openness_top_edge(self, gy: np.ndarray, avg_abs_gy: float) -> float:
"""Compute openness of top edge."""
try:
top_edge_strip_gy = float(np.mean(np.abs(gy[:max(1, gy.shape[0]//20), :])))
openness_top_edge = 1.0 - min(1.0, top_edge_strip_gy / max(avg_abs_gy, 1e-5) / 0.5)
return openness_top_edge
except Exception as e:
self.logger.error(f"Error computing top edge openness: {str(e)}")
return 0.5
def _compute_legacy_compatibility_features(self, hsv_img: np.ndarray, small_gray: np.ndarray,
features: Dict[str, Any], scale_factor: int) -> Dict[str, Any]:
"""Compute additional features for backward compatibility."""
try:
v_channel = hsv_img[:, :, 2]
# Light source detection
light_features = self._detect_light_sources(v_channel, features["avg_brightness"],
features["brightness_std"], scale_factor)
# Street line detection
street_score = self._compute_street_line_score(small_gray)
# Additional legacy features
legacy_features = {
**light_features,
"street_line_score": street_score,
"sky_blue_ratio": features.get("sky_like_blue_ratio", 0.0), # Alias
"gradient_ratio": features.get("gradient_ratio_vertical_horizontal", 1.0) # Alias
}
return legacy_features
except Exception as e:
self.logger.error(f"Error computing legacy compatibility features: {str(e)}")
return {}
def _detect_light_sources(self, v_channel: np.ndarray, avg_brightness: float,
brightness_std: float, scale_factor: int) -> Dict[str, float]:
"""Detect artificial light sources in the image."""
try:
# Sample pixels for efficiency
sampled_v = v_channel[::scale_factor*2, ::scale_factor*2]
# Light threshold
light_threshold = min(
self.config_manager.feature_thresholds.light_source_abs_thresh,
avg_brightness + 2 * brightness_std
)
is_bright_spots = sampled_v > light_threshold
bright_spot_count = int(np.sum(is_bright_spots))
# Initialize light features
circular_light_count = 0
indoor_light_score = 0.0
light_distribution_uniformity = 0.5
# Analyze light distribution if spots are found
if 1 < bright_spot_count < 20:
bright_y, bright_x = np.where(is_bright_spots)
if len(bright_y) > 1:
mean_x, mean_y = np.mean(bright_x), np.mean(bright_y)
dist_from_center = np.sqrt((bright_x - mean_x)**2 + (bright_y - mean_y)**2)
if np.std(dist_from_center) < np.mean(dist_from_center):
circular_light_count = min(3, len(bright_y) // 2)
light_distribution_uniformity = 0.7
if np.mean(bright_y) < sampled_v.shape[0] / 2:
indoor_light_score = 0.6
else:
indoor_light_score = 0.3
return {
"bright_spot_count": bright_spot_count,
"circular_light_count": circular_light_count,
"indoor_light_score": indoor_light_score,
"light_distribution_uniformity": light_distribution_uniformity
}
except Exception as e:
self.logger.error(f"Error detecting light sources: {str(e)}")
return {
"bright_spot_count": 0,
"circular_light_count": 0,
"indoor_light_score": 0.0,
"light_distribution_uniformity": 0.5
}
def _compute_street_line_score(self, small_gray: np.ndarray) -> float:
"""Compute street line detection score."""
try:
street_line_score = 0.0
bottom_half_sm = small_gray[small_gray.shape[0]//2:, :]
if bottom_half_sm.size > 0:
bottom_vert_gradient = cv2.Sobel(bottom_half_sm, cv2.CV_32F, 0, 1, ksize=3)
strong_vert_lines = np.abs(bottom_vert_gradient) > 50
if np.sum(strong_vert_lines) > (bottom_half_sm.size * 0.05):
street_line_score = 0.7
return street_line_score
except Exception as e:
self.logger.error(f"Error computing street line score: {str(e)}")
return 0.0
def _compute_legacy_structure_features(self, gray_img: np.ndarray, height: int) -> Dict[str, float]:
"""Compute legacy structure features for backward compatibility."""
try:
# Top region analysis for ceiling uniformity
top_region = gray_img[:height//4, :]
top_region_std = float(np.std(top_region)) if top_region.size > 0 else 0.0
ceiling_uniformity = 1.0 - min(1.0, top_region_std / max(float(np.mean(top_region)) if top_region.size > 0 else 1e-5, 1e-5))
# Horizontal line detection in top region
if top_region.size > 0:
top_gradients = np.abs(cv2.Sobel(top_region, cv2.CV_32F, 0, 1, ksize=3))
horizontal_lines_strength = float(np.mean(top_gradients))
horizontal_line_ratio = min(1.0, horizontal_lines_strength / 40.0)
else:
horizontal_line_ratio = 0.0
# Boundary edge score computation
boundary_edge_score = self._compute_legacy_boundary_score(gray_img)
return {
"ceiling_uniformity": ceiling_uniformity,
"horizontal_line_ratio": horizontal_line_ratio,
"top_region_std": top_region_std,
"boundary_edge_score": boundary_edge_score
}
except Exception as e:
self.logger.error(f"Error computing legacy structure features: {str(e)}")
return {
"ceiling_uniformity": 0.5,
"horizontal_line_ratio": 0.0,
"top_region_std": 0.0,
"boundary_edge_score": 0.0
}
def _compute_legacy_boundary_score(self, gray_img: np.ndarray) -> float:
"""Compute legacy boundary edge score."""
try:
height, width = gray_img.shape
# Create small version for boundary analysis
small_height, small_width = height // 4, width // 4
small_gray = cv2.resize(gray_img, (small_width, small_height), interpolation=cv2.INTER_AREA)
# Edge regions
left_edge_sm = small_gray[:, :small_width//6] if small_width > 6 else small_gray
right_edge_sm = small_gray[:, 5*small_width//6:] if small_width > 6 else small_gray
top_edge_sm = small_gray[:small_height//6, :] if small_height > 6 else small_gray
# Compute gradients for each edge
left_gradient = float(np.mean(np.abs(cv2.Sobel(left_edge_sm, cv2.CV_32F, 1, 0, ksize=3)))) if left_edge_sm.size > 0 else 0
right_gradient = float(np.mean(np.abs(cv2.Sobel(right_edge_sm, cv2.CV_32F, 1, 0, ksize=3)))) if right_edge_sm.size > 0 else 0
top_gradient = float(np.mean(np.abs(cv2.Sobel(top_edge_sm, cv2.CV_32F, 0, 1, ksize=3)))) if top_edge_sm.size > 0 else 0
# Combine and normalize
boundary_edge_score = (min(1.0, left_gradient/50) + min(1.0, right_gradient/50) + min(1.0, top_gradient/50)) / 3
return boundary_edge_score
except Exception as e:
self.logger.error(f"Error computing legacy boundary score: {str(e)}")
return 0.0
def _validate_image(self, image_rgb: np.ndarray) -> bool:
"""Validate input image format and dimensions."""
try:
if not isinstance(image_rgb, np.ndarray):
self.logger.error("Input is not a numpy array")
return False
if len(image_rgb.shape) != 3 or image_rgb.shape[2] != 3:
self.logger.error(f"Invalid image shape: {image_rgb.shape}. Expected (H, W, 3)")
return False
height, width = image_rgb.shape[:2]
if height == 0 or width == 0:
self.logger.error(f"Invalid image dimensions: {height}x{width}")
return False
return True
except Exception as e:
self.logger.error(f"Error validating image: {str(e)}")
return False
def _calculate_scale_factor(self, height: int, width: int) -> int:
"""Calculate appropriate scale factor for image processing efficiency."""
try:
base_scale = 4
scale_factor = base_scale + min(8, max(0, int((height * width) / (1000 * 1000)) if height * width > 0 else 0))
return max(1, scale_factor)
except Exception as e:
self.logger.error(f"Error calculating scale factor: {str(e)}")
return 4
def _get_default_features(self) -> Dict[str, Any]:
"""Return default feature values in case of processing errors."""
return {
"avg_brightness": 100.0,
"brightness_std": 50.0,
"dark_pixel_ratio": 0.0,
"bright_pixel_ratio": 0.0,
"brightness_uniformity": 0.5,
"blue_ratio": 0.0,
"sky_like_blue_ratio": 0.0,
"yellow_orange_ratio": 0.0,
"gray_ratio": 0.0,
"avg_saturation": 100.0,
"sky_region_brightness_ratio": 1.0,
"sky_region_saturation": 0.0,
"sky_region_blue_dominance": 0.0,
"sky_brightness": 100.0,
"warm_ratio": 0.0,
"cool_ratio": 0.0,
"color_atmosphere": "neutral",
"gradient_ratio_vertical_horizontal": 1.0,
"top_region_texture_complexity": 0.5,
"shadow_clarity_score": 0.5,
"vertical_strength": 0.0,
"horizontal_strength": 0.0,
"edges_density": 0.0,
"ceiling_likelihood": 0.0,
"boundary_clarity": 0.0,
"openness_top_edge": 0.5,
"ceiling_uniformity": 0.5,
"horizontal_line_ratio": 0.0,
"top_region_std": 0.0,
"boundary_edge_score": 0.0,
"bright_spot_count": 0,
"circular_light_count": 0,
"indoor_light_score": 0.0,
"light_distribution_uniformity": 0.5,
"street_line_score": 0.0,
"sky_blue_ratio": 0.0,
"gradient_ratio": 1.0
}
def _get_default_color_features(self) -> Dict[str, Any]:
"""Return default color feature values."""
return {
"blue_ratio": 0.0,
"sky_like_blue_ratio": 0.0,
"yellow_orange_ratio": 0.0,
"gray_ratio": 0.0,
"avg_saturation": 100.0,
"sky_region_brightness_ratio": 1.0,
"sky_region_saturation": 0.0,
"sky_region_blue_dominance": 0.0,
"sky_brightness": 100.0,
"warm_ratio": 0.0,
"cool_ratio": 0.0,
"color_atmosphere": "neutral"
}
def _get_default_sky_features(self) -> Dict[str, float]:
"""Return default sky region feature values."""
return {
"sky_region_brightness_ratio": 1.0,
"sky_region_saturation": 0.0,
"sky_region_blue_dominance": 0.0,
"sky_brightness": 100.0
}
|