File size: 51,909 Bytes
e6a18b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb01345
e6a18b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
import os
import re
import json
import logging
import random
import numpy as np
from typing import Dict, List, Tuple, Any, Optional

from scene_type import SCENE_TYPES
from scene_detail_templates import SCENE_DETAIL_TEMPLATES
from object_template_fillers import OBJECT_TEMPLATE_FILLERS
from lighting_conditions import LIGHTING_CONDITIONS
from viewpoint_templates import VIEWPOINT_TEMPLATES
from cultural_templates import CULTURAL_TEMPLATES
from confidence_templates import CONFIDENCE_TEMPLATES
from landmark_data import ALL_LANDMARKS
from region_analyzer import RegionAnalyzer
from viewpoint_detector import ViewpointDetector, ViewpointDetectionError
from template_manager import TemplateManager, TemplateLoadingError, TemplateFillError
from object_description_generator import ObjectDescriptionGenerator, ObjectDescriptionError
from cultural_context_analyzer import CulturalContextAnalyzer, CulturalContextError
from text_formatter import TextFormatter, TextFormattingError

class EnhancedSceneDescriberError(Exception):
    """場景描述生成過程中的自定義異常"""
    pass

class EnhancedSceneDescriber:
    """
    增強場景描述器 - 提供詳細自然語言場景描述的主要窗口,其他相關class匯集於此

    此class會協調多個專門組件來生成高質量的場景描述,包括視角檢測、
    模板管理、物件描述、文化語境分析和文本格式化。
    """

    def __init__(self, templates_db: Optional[Dict] = None, scene_types: Optional[Dict] = None, spatial_analyzer_instance: Optional[Any] = None):
        """
        初始化增強場景描述器

        Args:
            templates_db: 可選的自定義模板數據庫
            scene_types: 場景類型定義字典
            spatial_analyzer_instance: 空間分析器實例(保持兼容性)
        """
        self.logger = logging.getLogger(self.__class__.__name__)
        self.logger.setLevel(logging.INFO)

        # 如果沒有logger,就加一個
        if not self.logger.hasHandlers():
            handler = logging.StreamHandler()
            formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
            handler.setFormatter(formatter)
            self.logger.addHandler(handler)

        try:
            # 載入場景類型定義
            self.scene_types = scene_types or self._load_default_scene_types()

            # 初始化子組件
            self._initialize_components(templates_db)

            # 保存空間分析器實例以保持兼容性
            self.spatial_analyzer_instance = spatial_analyzer_instance

            self.logger.info("EnhancedSceneDescriber initialized successfully with %d scene types",
                           len(self.scene_types))

        except Exception as e:
            error_msg = f"Failed to initialize EnhancedSceneDescriber: {str(e)}"
            self.logger.error(f"{error_msg}\n{e.__class__.__name__}: {str(e)}")
            raise EnhancedSceneDescriberError(error_msg) from e

    def _load_default_scene_types(self) -> Dict:
        """
        載入默認場景類型

        Returns:
            Dict: 場景類型定義
        """
        try:
            return SCENE_TYPES
        except Exception as e:
            self.logger.error(f"Failed to import SCENE_TYPES: {str(e)}")
            return {}  # 返回空字典

    def _initialize_components(self, templates_db: Optional[Dict]):
        """
        初始化所有子組件

        Args:
            templates_db: 可選的模板數據庫
        """
        try:
            # 初始化視角檢測器
            self.viewpoint_detector = ViewpointDetector()

            # 初始化區域分析器
            self.region_analyzer = RegionAnalyzer()

            # 初始化模板管理器
            self.template_manager = TemplateManager(custom_templates_db=templates_db)

            # 初始化物件描述生成器,傳入區域分析器
            self.object_description_generator = ObjectDescriptionGenerator(
                region_analyzer=self.region_analyzer
            )

            # 初始化文化語境分析器
            self.cultural_context_analyzer = CulturalContextAnalyzer()

            # 初始化文本格式化器
            self.text_formatter = TextFormatter()

            self.logger.debug("All components initialized successfully")

        except Exception as e:
            error_msg = f"Component initialization failed: {str(e)}"
            self.logger.error(error_msg)
            # 初始化基本組件而不是拋出異常
            self._initialize_fallback_components()


    def generate_description(self, scene_type: str, detected_objects: List[Dict], confidence: float,
                           lighting_info: Dict, functional_zones: List[str], enable_landmark: bool = True,
                           scene_scores: Optional[Dict] = None, spatial_analysis: Optional[Dict] = None,
                           image_dimensions: Optional[Tuple[int, int]] = None, # 改為 Tuple
                           places365_info: Optional[Dict] = None,
                           object_statistics: Optional[Dict] = None) -> str:
        try:
            traffic_list = [obj for obj in detected_objects if obj.get("class_name", "") == "traffic light"]
            # print(f"[DEBUG] generate_description 一開始接收到的 traffic light 數量: {len(traffic_list)}") # 原始的 print
            self.logger.debug(f"Initial traffic light count in generate_description: {len(traffic_list)}") # 改用 logger
            # for idx, tl in enumerate(traffic_list): # 這部分 log 可能過於詳細,先註解
            #     self.logger.debug(f"    idx={idx}, confidence={tl.get('confidence', 0):.4f}, bbox={tl.get('bbox')}, region={tl.get('region')}")

            if scene_type == "unknown" or confidence < 0.4:
                generic_desc = self._generate_generic_description(detected_objects, lighting_info)
                return self.text_formatter.format_final_description(generic_desc)

            current_detected_objects = detected_objects
            if not enable_landmark:
                current_detected_objects = [obj for obj in detected_objects if not obj.get("is_landmark", False)]

            places365_context = ""
            if places365_info and places365_info.get('confidence', 0) > 0.3:
                scene_label = places365_info.get('scene_label', '')
                attributes = places365_info.get('attributes', [])
                is_indoor = places365_info.get('is_indoor', None)
                if scene_label:
                    places365_context = f"Scene context: {scene_label}"
                    if attributes:
                        places365_context += f" with characteristics: {', '.join(attributes[:3])}"
                    if is_indoor is not None:
                        indoor_outdoor = "indoor" if is_indoor else "outdoor"
                        places365_context += f" ({indoor_outdoor} environment)"
                self.logger.debug(f"Enhanced description incorporating Places365 context: {places365_context}")

            landmark_objects_in_scene = [obj for obj in current_detected_objects if obj.get("is_landmark", False)]
            has_landmark_in_scene = len(landmark_objects_in_scene) > 0

            if enable_landmark and (scene_type in ["tourist_landmark", "natural_landmark", "historical_monument"] or has_landmark_in_scene):
                landmark_desc = self._generate_landmark_description(
                    scene_type, current_detected_objects, confidence,
                    lighting_info, functional_zones, landmark_objects_in_scene
                )
                return self.text_formatter.format_final_description(landmark_desc)

            viewpoint = self.viewpoint_detector.detect_viewpoint(current_detected_objects)
            current_scene_type = scene_type

            if viewpoint == "aerial":
                if "intersection" in current_scene_type.lower() or self._is_intersection(current_detected_objects):
                    current_scene_type = "aerial_view_intersection"
                elif any(keyword in current_scene_type.lower() for keyword in ["commercial", "shopping", "retail"]):
                    current_scene_type = "aerial_view_commercial_area"
                elif any(keyword in current_scene_type.lower() for keyword in ["plaza", "square"]):
                    current_scene_type = "aerial_view_plaza"
                else:
                    current_scene_type = "aerial_view_general"

            current_scene_type = self._sanitize_scene_type_for_description(current_scene_type)

            # 偵測文化背景資訊
            cultural_context = None
            if viewpoint != "aerial":
                cultural_context = self.cultural_context_analyzer.detect_cultural_context(current_scene_type, current_detected_objects)

             # 設定基礎描述
            base_description = "A scene"
            if viewpoint == "aerial":
                if current_scene_type in self.scene_types: # 確保 self.scene_types 已有
                    base_description = self.scene_types.get(current_scene_type, {}).get("description", "An aerial view showing the layout and movement patterns from above")
                else:
                    base_description = "An aerial view showing the layout and movement patterns from above"
            elif current_scene_type in self.scene_types: # 確保 self.scene_types 已有
                 base_description = self.scene_types.get(current_scene_type, {}).get("description", "A scene")

            # 假設 template_manager 內部可以處理 List[str] 的 functional_zones
            selected_template = self.template_manager.get_template_by_scene_type(
                scene_type=current_scene_type,
                detected_objects=current_detected_objects,
                functional_zones=functional_zones or [] # 傳入 List[str]
            )

            # 用於 fill_template 中的某些佔位符
            processed_functional_zones = {}
            if functional_zones:
                if isinstance(functional_zones, dict): # 如果外部傳入的就是dict
                     processed_functional_zones = functional_zones
                elif isinstance(functional_zones, list): # 如果是 list of strings
                     processed_functional_zones = {f"zone_{i}": {"description": zone_desc} for i, zone_desc in enumerate(functional_zones)}


            # 組織場景資料
            scene_data = {
                "detected_objects": current_detected_objects,
                "functional_zones": processed_functional_zones, # 傳入處理過的字典
                "scene_type": current_scene_type,
                "object_statistics": object_statistics or {},
                "lighting_info": lighting_info,
                "spatial_analysis": spatial_analysis,
                "places365_info": places365_info
            }

            # 應用模板產生核心場景描述
            core_scene_details = self.template_manager.apply_template(selected_template, scene_data)

            # 組合基礎描述與核心場景細節
            description = base_description
            if core_scene_details and core_scene_details.strip():
                cleaned_scene_details = self._validate_and_clean_scene_details(core_scene_details)
                if base_description.lower() == "a scene" and len(cleaned_scene_details) > len(base_description):
                    description = cleaned_scene_details
                else:
                    description = self.text_formatter.smart_append(description, cleaned_scene_details)
            elif not core_scene_details and not description: # 如果兩者都為空
                description = self._generate_generic_description(current_detected_objects, lighting_info)

            # 添加次要描述資訊
            if current_scene_type in self.scene_types and "secondary_description" in self.scene_types[current_scene_type]:
                secondary_desc = self.scene_types[current_scene_type]["secondary_description"]
                if secondary_desc:
                    description = self.text_formatter.smart_append(description, secondary_desc)

            # 處理人物相關的描述
            people_objs = [obj for obj in current_detected_objects if obj.get("class_id") == 0]
            if people_objs:
                people_count = len(people_objs)
                if people_count == 1: people_phrase = "a single person"
                elif 1 < people_count <= 3: people_phrase = f"{people_count} people"
                elif 3 < people_count <= 7: people_phrase = "several people"
                else: people_phrase = "multiple people"
                if not any(p_word in description.lower() for p_word in ["person", "people", "pedestrian"]):
                    description = self.text_formatter.smart_append(description, f"The scene includes {people_phrase}.")

            # 添加文化背景元素(非空中視角)
            if cultural_context and viewpoint != "aerial":
                cultural_elements = self.cultural_context_analyzer.generate_cultural_elements(cultural_context)
                if cultural_elements:
                    description = self.text_formatter.smart_append(description, cultural_elements)

            # 處理光照條件描述
            lighting_description_text = ""
            if lighting_info and "time_of_day" in lighting_info:
                lighting_type = lighting_info["time_of_day"]
                lighting_desc_template = self.template_manager.get_lighting_template(lighting_type)
                if lighting_desc_template: lighting_description_text = lighting_desc_template
            if lighting_description_text and lighting_description_text.lower() not in description.lower():
                description = self.text_formatter.smart_append(description, lighting_description_text)

             # 添加視角特定的觀察描述
            if viewpoint != "eye_level":
                viewpoint_template = self.template_manager.get_viewpoint_template(viewpoint)
                prefix = viewpoint_template.get('prefix', '')
                observation_template = viewpoint_template.get("observation", "")
                scene_elements_for_vp = "the overall layout and objects"
                if viewpoint == "aerial": scene_elements_for_vp = "crossing patterns and general layout"
                viewpoint_observation_text = observation_template.format(scene_elements=scene_elements_for_vp)
                full_viewpoint_text = ""
                if prefix:
                    full_viewpoint_text = prefix.strip() + " "
                    if viewpoint_observation_text and viewpoint_observation_text[0].islower():
                        full_viewpoint_text += viewpoint_observation_text
                    elif viewpoint_observation_text:
                        full_viewpoint_text = prefix + (viewpoint_observation_text[0].lower() + viewpoint_observation_text[1:] if description else viewpoint_observation_text)
                elif viewpoint_observation_text:
                    full_viewpoint_text = viewpoint_observation_text[0].upper() + viewpoint_observation_text[1:]
                if full_viewpoint_text and full_viewpoint_text.lower() not in description.lower():
                    description = self.text_formatter.smart_append(description, full_viewpoint_text)

            # 需要轉換或調整 describe_functional_zones
            if functional_zones and len(functional_zones) > 0:
                if isinstance(functional_zones, dict):
                     zones_desc_text = self.object_description_generator.describe_functional_zones(functional_zones)
                else: # 如果是 list of strings
                     temp_zones_dict = {f"area_{i}": {"description": desc} for i, desc in enumerate(functional_zones)}
                     zones_desc_text = self.object_description_generator.describe_functional_zones(temp_zones_dict)

                if zones_desc_text:
                    description = self.text_formatter.smart_append(description, zones_desc_text)

            # 避免重複提到
            if hasattr(self.text_formatter, 'deduplicate_sentences_in_description'):
                deduplicated_description = self.text_formatter.deduplicate_sentences_in_description(description)
                self.logger.info(f"Description before pre-LLM deduplication (len {len(description)}): '{description[:150]}...'")
                self.logger.info(f"Description after pre-LLM deduplication (len {len(deduplicated_description)}): '{deduplicated_description[:150]}...'")
                description = deduplicated_description # 更新 description 為去除重複後的版本
            else:
                self.logger.warning("TextFormatter does not have 'deduplicate_sentences_in_description'. Skipping pre-LLM deduplication of the internally generated description.")

            # 格式化最終描述
            final_formatted_description = self.text_formatter.format_final_description(description)

            # 如果禁用地標,過濾地標引用
            if not enable_landmark:
                final_formatted_description = self.text_formatter.filter_landmark_references(final_formatted_description, enable_landmark=False)

            # 如果描述為空,使用備用描述
            if not final_formatted_description.strip() or final_formatted_description.strip() == ".":
                self.logger.warning(f"Description for scene_type '{current_scene_type}' became empty after processing. Falling back.")
                final_formatted_description = self.text_formatter.format_final_description(
                    self._generate_generic_description(current_detected_objects, lighting_info)
                )

            return final_formatted_description

        except Exception as e:
            error_msg = f"Error generating scene description: {str(e)}"
            self.logger.error(f"{error_msg}\n{e.__class__.__name__}: {str(e)}")
            try:
                fallback_desc = self._generate_generic_description(detected_objects, lighting_info)
                return self.text_formatter.format_final_description(fallback_desc)
            except:
                return "A scene with various elements is visible."

    def _extract_placeholders(self, template: str) -> List[str]:
        """提取模板中的佔位符"""
        import re
        return re.findall(r'\{([^}]+)\}', template)

    def _generate_placeholder_content(self, placeholder: str, detected_objects: List[Dict],
                                    functional_zones: List, scene_type: str,
                                    object_statistics: Dict) -> str:
        """生成佔位符內容"""
        all_replacements = self._generate_default_replacements()
        return self._get_placeholder_replacement(
            placeholder, {}, all_replacements, detected_objects, scene_type
        )

    def _preprocess_functional_zones(self, functional_zones: List) -> Dict:
        """預處理功能區域數據"""
        if isinstance(functional_zones, list):
            # 將列表轉換為字典格式
            zones_dict = {}
            for i, zone in enumerate(functional_zones):
                if isinstance(zone, str):
                    zones_dict[f"area {i+1}"] = {"description": zone}
                elif isinstance(zone, dict):
                    zones_dict[f"area {i+1}"] = zone
            return zones_dict
        elif isinstance(functional_zones, dict):
            return functional_zones
        else:
            return {}

    def _standardize_placeholder_content(self, content: str, placeholder_type: str) -> str:
        """標準化佔位符內容"""
        if not content:
            return "various elements"
        return content.strip()

    def _finalize_description_output(self, description: str) -> str:
        """最終化描述輸出"""
        if not description:
            return "A scene featuring various elements and organized areas of activity."

        # 基本清理
        import re
        finalized = re.sub(r'\s+', ' ', description).strip()

        # 確保適當結尾
        if finalized and not finalized.endswith(('.', '!', '?')):
            finalized += '.'

        # 首字母大寫
        if finalized:
            finalized = finalized[0].upper() + finalized[1:] if len(finalized) > 1 else finalized.upper()

        return finalized

    def _sanitize_scene_type_for_description(self, scene_type: str) -> str:
        """
        清理場景類型名稱,確保不包含內部標識符格式

        Args:
            scene_type: 原始場景類型名稱

        Returns:
            str: 清理後的場景類型名稱
        """
        try:
            # 移除下劃線並轉換為空格分隔的自然語言
            cleaned_type = scene_type.replace('_', ' ')

            # 確保不直接在描述中使用技術性場景類型名稱
            return cleaned_type

        except Exception as e:
            self.logger.warning(f"Error sanitizing scene type '{scene_type}': {str(e)}")
            return "general scene"

    def _validate_and_clean_scene_details(self, scene_details: str) -> str:
        """
        驗證並清理場景詳細信息,移除可能的模板填充錯誤

        Args:
            scene_details: 原始場景詳細信息

        Returns:
            str: 清理後的場景詳細信息
        """
        try:
            if not scene_details or not scene_details.strip():
                return ""

            cleaned = scene_details.strip()

            # 移除常見的模板填充錯誤模式
            import re

            # 修復 "In ," 類型的錯誤
            cleaned = re.sub(r'\bIn\s*,\s*', 'In this scene, ', cleaned)
            cleaned = re.sub(r'\bAt\s*,\s*', 'At this location, ', cleaned)
            cleaned = re.sub(r'\bWithin\s*,\s*', 'Within this area, ', cleaned)

            # 移除內部標識符格式
            cleaned = re.sub(r'\b\w+_\w+(?:_\w+)*\b(?!\s+(area|zone|region))',
                            lambda m: m.group(0).replace('_', ' '), cleaned)

            # 確保句子完整性
            if cleaned and not cleaned.endswith(('.', '!', '?')):
                cleaned += '.'

            return cleaned

        except Exception as e:
            self.logger.warning(f"Error validating scene details: {str(e)}")
            return scene_details if scene_details else ""

    def _generate_landmark_description(self,
                                     scene_type: str,
                                     detected_objects: List[Dict],
                                     confidence: float,
                                     lighting_info: Optional[Dict] = None,
                                     functional_zones: Optional[Dict] = None,
                                     landmark_objects: Optional[List[Dict]] = None) -> str:
        """
        生成包含地標信息的場景描述

        Args:
            scene_type: 識別的場景類型
            detected_objects: 檢測到的物件列表
            confidence: 場景分類置信度
            lighting_info: 照明條件信息
            functional_zones: 功能區域信息
            landmark_objects: 識別為地標的物件列表

        Returns:
            str: 包含地標信息的自然語言場景描述
        """
        try:
            # 如果沒有提供地標物件,從檢測物件中篩選
            if landmark_objects is None:
                landmark_objects = [obj for obj in detected_objects if obj.get("is_landmark", False)]

            # 如果沒有地標,退回到標準描述
            if not landmark_objects:
                if scene_type in ["tourist_landmark", "natural_landmark", "historical_monument"]:
                    base_description = "A scenic area that appears to be a tourist destination, though specific landmarks are not clearly identifiable."
                else:
                    return self.text_formatter.format_final_description(self._generate_scene_details(
                        scene_type,
                        detected_objects,
                        lighting_info,
                        self.viewpoint_detector.detect_viewpoint(detected_objects)
                    ))
            else:
                # 獲取主要地標
                primary_landmark = max(landmark_objects, key=lambda x: x.get("confidence", 0))
                landmark_name = primary_landmark.get("class_name", "landmark")
                # 先取原生 location
                landmark_location = primary_landmark.get("location", "")
                # 如果 location 為空,就從全域 ALL_LANDMARKS 補上
                lm_id = primary_landmark.get("landmark_id")
                if not landmark_location and lm_id and lm_id in ALL_LANDMARKS:
                    landmark_location = ALL_LANDMARKS[lm_id].get("location", "")

                # 根據地標類型選擇適當的描述模板,並插入 location
                if scene_type == "natural_landmark" or primary_landmark.get("landmark_type") == "natural":
                    base_description = f"A natural landmark scene featuring {landmark_name} in {landmark_location}."
                elif scene_type == "historical_monument" or primary_landmark.get("landmark_type") == "monument":
                    base_description = f"A historical monument scene showcasing {landmark_name}, a significant landmark in {landmark_location}."
                else:
                    base_description = f"A tourist landmark scene centered around {landmark_name}, an iconic structure in {landmark_location}."

            # 添加地標的額外信息
            landmark_details = []
            for landmark in landmark_objects:
                details = []

                if "year_built" in landmark:
                    details.append(f"built in {landmark['year_built']}")

                if "architectural_style" in landmark:
                    details.append(f"featuring {landmark['architectural_style']} architectural style")

                if "significance" in landmark:
                    details.append(landmark["significance"])

                # 補 location(如果該物件沒有 location,就再從 ALL_LANDMARKS 撈一次)
                loc = landmark.get("location", "")
                lm_id_iter = landmark.get("landmark_id")
                if not loc and lm_id_iter and lm_id_iter in ALL_LANDMARKS:
                    loc = ALL_LANDMARKS[lm_id_iter].get("location", "")
                if loc:
                    details.append(f"located in {loc}")

                if details:
                    landmark_details.append(f"{landmark['class_name']} ({', '.join(details)})")

            # 將詳細信息添加到基本描述中
            if landmark_details:
                description = base_description + " The scene features " + ", ".join(landmark_details) + "."
            else:
                description = base_description

            # 獲取視角
            viewpoint = self.viewpoint_detector.detect_viewpoint(detected_objects)

            # 生成人員活動描述
            people_count = len([obj for obj in detected_objects if obj["class_id"] == 0])

            if people_count > 0:
                if people_count == 1:
                    people_description = "There is one person in the scene, likely a tourist or visitor."
                elif people_count < 5:
                    people_description = f"There are {people_count} people in the scene, possibly tourists visiting the landmark."
                else:
                    people_description = f"The scene includes a group of {people_count} people, indicating this is a popular tourist destination."

                description = self.text_formatter.smart_append(description, people_description)

            # 添加照明信息
            if lighting_info and "time_of_day" in lighting_info:
                lighting_type = lighting_info["time_of_day"]
                lighting_description = self.template_manager.get_lighting_template(lighting_type)
                description = self.text_formatter.smart_append(description, lighting_description)

            # 添加視角描述
            if viewpoint != "eye_level":
                viewpoint_template = self.template_manager.get_viewpoint_template(viewpoint)

                prefix = viewpoint_template.get('prefix', '')
                if prefix and not description.startswith(prefix):
                    if description and description[0].isupper():
                        description = prefix + description[0].lower() + description[1:]
                    else:
                        description = prefix + description

                viewpoint_desc = viewpoint_template.get("observation", "").format(
                    scene_elements="the landmark and surrounding area"
                )

                if viewpoint_desc and viewpoint_desc not in description:
                    description = self.text_formatter.smart_append(description, viewpoint_desc)

            # 添加功能區域描述
            if functional_zones and len(functional_zones) > 0:
                zones_desc = self.object_description_generator.describe_functional_zones(functional_zones)
                if zones_desc:
                    description = self.text_formatter.smart_append(description, zones_desc)

            # 描述可能的活動
            landmark_activities = []

            if scene_type == "natural_landmark" or any(obj.get("landmark_type") == "natural" for obj in landmark_objects):
                landmark_activities = [
                    "nature photography",
                    "scenic viewing",
                    "hiking or walking",
                    "guided nature tours",
                    "outdoor appreciation"
                ]
            elif scene_type == "historical_monument" or any(obj.get("landmark_type") == "monument" for obj in landmark_objects):
                landmark_activities = [
                    "historical sightseeing",
                    "educational tours",
                    "cultural appreciation",
                    "photography of historical architecture",
                    "learning about historical significance"
                ]
            else:
                landmark_activities = [
                    "sightseeing",
                    "taking photographs",
                    "guided tours",
                    "cultural tourism",
                    "souvenir shopping"
                ]

            # 添加活動描述
            if landmark_activities:
                activities_text = "Common activities at this location include " + ", ".join(landmark_activities[:3]) + "."
                description = self.text_formatter.smart_append(description, activities_text)

            return self.text_formatter.format_final_description(description)

        except Exception as e:
            self.logger.warning(f"Error generating landmark description: {str(e)}")
            # 備用處理
            return self.text_formatter.format_final_description(
                "A landmark scene with notable architectural or natural features."
            )


    def _is_intersection(self, detected_objects: List[Dict]) -> bool:
        """
        通過分析物件分布來判斷場景是否為十字路口

        Args:
            detected_objects: 檢測到的物件列表

        Returns:
            bool: 是否為十字路口
        """
        try:
            pedestrians = [obj for obj in detected_objects if obj.get("class_id") == 0]

            if len(pedestrians) >= 8:
                positions = [obj.get("normalized_center", (0, 0)) for obj in pedestrians]

                x_coords = [pos[0] for pos in positions]
                y_coords = [pos[1] for pos in positions]

                x_variance = np.var(x_coords) if len(x_coords) > 1 else 0
                y_variance = np.var(y_coords) if len(y_coords) > 1 else 0

                x_range = max(x_coords) - min(x_coords)
                y_range = max(y_coords) - min(y_coords)

                if x_range > 0.5 and y_range > 0.5 and 0.7 < (x_range / y_range) < 1.3:
                    return True

            return False

        except Exception as e:
            self.logger.warning(f"Error detecting intersection: {str(e)}")
            return False

    def _generate_generic_description(self, detected_objects: List[Dict], lighting_info: Optional[Dict] = None) -> str:
        """
        當場景類型未知或置信度極低時生成通用描述

        Args:
            detected_objects: 檢測到的物件列表
            lighting_info: 可選的照明條件信息

        Returns:
            str: 基於檢測物件的通用描述
        """
        try:
            obj_counts = {}
            for obj in detected_objects:
                class_name = obj.get("class_name", "unknown object")
                if class_name not in obj_counts:
                    obj_counts[class_name] = 0
                obj_counts[class_name] += 1

            top_objects = sorted(obj_counts.items(), key=lambda x: x[1], reverse=True)[:5]

            if not top_objects:
                base_desc = "This scene displays various elements, though specific objects are not clearly identifiable."
            else:
                objects_text = []
                for name, count in top_objects:
                    # 確保物件名稱不包含技術性格式
                    clean_name = name.replace('_', ' ') if isinstance(name, str) else str(name)
                    if count > 1:
                        objects_text.append(f"{count} {clean_name}s")
                    else:
                        objects_text.append(f"a {clean_name}" if clean_name[0].lower() not in 'aeiou' else f"an {clean_name}")

                if len(objects_text) == 1:
                    objects_list = objects_text[0]
                elif len(objects_text) == 2:
                    objects_list = f"{objects_text[0]} and {objects_text[1]}"
                else:
                    objects_list = ", ".join(objects_text[:-1]) + f", and {objects_text[-1]}"

                base_desc = f"This scene features {objects_list}."

            # 添加照明信息
            if lighting_info and "time_of_day" in lighting_info:
                lighting_type = lighting_info["time_of_day"]
                lighting_desc = self.template_manager.get_lighting_template(lighting_type)
                base_desc += f" {lighting_desc}"

            return base_desc

        except Exception as e:
            self.logger.warning(f"Error generating generic description: {str(e)}")
            return "A general scene is visible with various elements."

    def _generate_scene_details(self,
                              scene_type: str,
                              detected_objects: List[Dict],
                              lighting_info: Optional[Dict] = None,
                              viewpoint: str = "eye_level",
                              spatial_analysis: Optional[Dict] = None,
                              image_dimensions: Optional[Tuple[int, int]] = None,
                              places365_info: Optional[Dict] = None,
                              object_statistics: Optional[Dict] = None) -> str:
        """
        基於場景類型和檢測物件生成詳細描述

        Args:
            scene_type: 識別的場景類型
            detected_objects: 檢測到的物件列表
            lighting_info: 可選的照明條件信息
            viewpoint: 檢測到的視角
            spatial_analysis: 可選的空間分析結果
            image_dimensions: 可選的圖像尺寸
            places365_info: 可選的 Places365 場景分類結果
            object_statistics: 可選的詳細物件統計信息

        Returns:
            str: 詳細場景描述
        """
        try:
            scene_details = ""

            # 日常場景類型列表
            everyday_scene_types = [
                "general_indoor_space", "generic_street_view",
                "desk_area_workspace", "outdoor_gathering_spot",
                "kitchen_counter_or_utility_area", "unknown"
            ]

            # 預處理場景類型以避免內部格式洩漏
            processed_scene_type = self._sanitize_scene_type_for_description(scene_type)

            # 確定場景描述方法
            is_confident_specific_scene = scene_type not in everyday_scene_types and scene_type in self.template_manager.get_scene_detail_templates(scene_type)
            treat_as_everyday = scene_type in everyday_scene_types

            if hasattr(self, 'enable_landmark') and not self.enable_landmark:
                if scene_type not in ["kitchen", "bedroom", "living_room", "office_workspace", "dining_area", "professional_kitchen"]:
                    treat_as_everyday = True

            if treat_as_everyday or not is_confident_specific_scene:
                self.logger.debug(f"Generating dynamic description for scene_type: {scene_type}")
                scene_details = self.object_description_generator.generate_dynamic_everyday_description(
                    detected_objects,
                    lighting_info,
                    viewpoint,
                    spatial_analysis,
                    image_dimensions,
                    places365_info,
                    object_statistics
                )
            else:
                self.logger.debug(f"Using template for scene_type: {scene_type}")
                templates_list = self.template_manager.get_scene_detail_templates(scene_type, viewpoint)

                if templates_list:
                    detail_template = random.choice(templates_list)
                    scene_details = self.template_manager.fill_template(
                        detail_template,
                        detected_objects,
                        scene_type,
                        places365_info,
                        object_statistics
                    )
                else:
                    scene_details = self.object_description_generator.generate_dynamic_everyday_description(
                        detected_objects, lighting_info, viewpoint, spatial_analysis,
                        image_dimensions, places365_info, object_statistics
                    )

            # 如果禁用地標檢測,過濾地標引用
            if hasattr(self, 'enable_landmark') and not self.enable_landmark:
                scene_details = self.text_formatter.filter_landmark_references(scene_details, enable_landmark=False)

            return scene_details if scene_details else "A scene with some visual elements."

        except Exception as e:
            self.logger.warning(f"Error generating scene details: {str(e)}")
            return "A scene with various elements."

    def filter_landmark_references(self, text, enable_landmark=True):
        """
        動態過濾文本中的地標引用

        Args:
            text: 需要過濾的文本
            enable_landmark: 是否啟用地標功能

        Returns:
            str: 過濾後的文本
        """
        return self.text_formatter.filter_landmark_references(text, enable_landmark)

    def get_prominent_objects(self, detected_objects: List[Dict],
                          min_prominence_score: float = 0.5,
                          max_categories_to_return: Optional[int] = None,
                          max_total_objects: Optional[int] = None) -> List[Dict]:
        """
        獲取最重要的物件

        Args:
            detected_objects: 檢測到的物件列表
            min_prominence_score: 最小重要性分數閾值,預設為0.5
            max_categories_to_return: 可選的最大返回類別數量限制
            max_total_objects: 可選的最大返回物件總數限制

        Returns:
            List[Dict]: 重要物件列表
        """
        try:
            # 傳遞所有參數
            prominent_objects = self.object_description_generator.get_prominent_objects(
                detected_objects,
                min_prominence_score,
                max_categories_to_return
            )

            # 如果指定了最大物件總數限制,進行額外過濾
            if max_total_objects is not None and max_total_objects > 0:
                # 限制總物件數量,保持重要性排序
                prominent_objects = prominent_objects[:max_total_objects]

            # 如果指定了最大類別數量限制,則進行額外過濾
            if max_categories_to_return is not None and max_categories_to_return > 0:
                # 按類別分組物件
                categories_seen = set()
                filtered_objects = []

                for obj in prominent_objects:
                    class_name = obj.get("class_name", "unknown")
                    if class_name not in categories_seen:
                        categories_seen.add(class_name)
                        filtered_objects.append(obj)

                        # 如果已達到最大類別數量,停止添加新類別
                        if len(categories_seen) >= max_categories_to_return:
                            break
                    elif class_name in categories_seen:
                        # 如果是已見過的類別,仍然添加該物件
                        filtered_objects.append(obj)

                return filtered_objects

            return prominent_objects

        except Exception as e:
            self.logger.warning(f"Error getting prominent objects: {str(e)}")
            return []

    def detect_viewpoint(self, detected_objects: List[Dict]) -> str:
        """
        檢測圖像視角類型

        Args:
            detected_objects: 檢測到的物件列表

        Returns:
            str: 檢測到的視角類型
        """
        try:
            return self.viewpoint_detector.detect_viewpoint(detected_objects)
        except Exception as e:
            self.logger.warning(f"Error detecting viewpoint: {str(e)}")
            return "eye_level"

    def detect_cultural_context(self, scene_type: str, detected_objects: List[Dict]) -> Optional[str]:
        """
        檢測場景的文化語境

        Args:
            scene_type: 識別的場景類型
            detected_objects: 檢測到的物件列表

        Returns:
            Optional[str]: 檢測到的文化語境或None
        """
        try:
            return self.cultural_context_analyzer.detect_cultural_context(scene_type, detected_objects)
        except CulturalContextError as e:
            self.logger.warning(f"Error detecting cultural context: {str(e)}")
            return None

    def generate_cultural_elements(self, cultural_context: str) -> str:
        """
        為檢測到的文化語境生成描述元素

        Args:
            cultural_context: 檢測到的文化語境

        Returns:
            str: 文化元素描述
        """
        try:
            return self.cultural_context_analyzer.generate_cultural_elements(cultural_context)
        except CulturalContextError as e:
            self.logger.warning(f"Error generating cultural elements: {str(e)}")
            return ""

    def format_object_list_for_description(self, objects: List[Dict],
                                         use_indefinite_article_for_one: bool = False,
                                         count_threshold_for_generalization: int = -1,
                                         max_types_to_list: int = 5) -> str:
        """
        將物件列表格式化為人類可讀的字符串

        Args:
            objects: 物件字典列表
            use_indefinite_article_for_one: 單個物件是否使用 "a/an"
            count_threshold_for_generalization: 計數閾值
            max_types_to_list: 最大物件類型數量

        Returns:
            str: 格式化的物件描述字符串
        """
        try:
            return self.object_description_generator.format_object_list_for_description(
                objects, use_indefinite_article_for_one, count_threshold_for_generalization, max_types_to_list
            )
        except ObjectDescriptionError as e:
            self.logger.warning(f"Error formatting object list: {str(e)}")
            return "various objects"

    def get_spatial_description(self, obj: Dict, image_width: Optional[int] = None,
                              image_height: Optional[int] = None) -> str:
        """
        為物件生成空間位置描述

        Args:
            obj: 物件字典
            image_width: 可選的圖像寬度
            image_height: 可選的圖像高度

        Returns:
            str: 空間描述字符串
        """
        try:
            return self.object_description_generator.get_spatial_description(obj, image_width, image_height)
        except ObjectDescriptionError as e:
            self.logger.warning(f"Error generating spatial description: {str(e)}")
            return "in the scene"

    def optimize_object_description(self, description: str) -> str:
        """
        優化物件描述,避免重複列舉相同物件

        Args:
            description: 原始描述文本

        Returns:
            str: 優化後的描述文本
        """
        try:
            return self.object_description_generator.optimize_object_description(description)
        except ObjectDescriptionError as e:
            self.logger.warning(f"Error optimizing object description: {str(e)}")
            return description

    def describe_functional_zones(self, functional_zones: Dict) -> str:
        """
        生成場景功能區域的描述

        Args:
            functional_zones: 識別出的功能區域字典

        Returns:
            str: 功能區域描述
        """
        try:
            return self.object_description_generator.describe_functional_zones(functional_zones)
        except ObjectDescriptionError as e:
            self.logger.warning(f"Error describing functional zones: {str(e)}")
            return ""

    def smart_append(self, current_text: str, new_fragment: str) -> str:
        """
        智能地將新文本片段附加到現有文本

        Args:
            current_text: 要附加到的現有文本
            new_fragment: 要附加的新文本片段

        Returns:
            str: 合併後的文本
        """
        try:
            return self.text_formatter.smart_append(current_text, new_fragment)
        except TextFormattingError as e:
            self.logger.warning(f"Error in smart append: {str(e)}")
            return f"{current_text} {new_fragment}" if current_text else new_fragment

    def format_final_description(self, text: str) -> str:
        """
        格式化最終描述文本

        Args:
            text: 要格式化的文本

        Returns:
            str: 格式化後的文本
        """
        try:
            return self.text_formatter.format_final_description(text)
        except TextFormattingError as e:
            self.logger.warning(f"Error formatting final description: {str(e)}")
            return text

    def get_template(self, category: str, key: Optional[str] = None):
        """
        獲取指定類別的模板

        Args:
            category: 模板類別名稱
            key: 可選的具體模板鍵值

        Returns:
            模板內容
        """
        try:
            return self.template_manager.get_template(category, key)
        except (TemplateLoadingError, TemplateFillError) as e:
            self.logger.warning(f"Error getting template: {str(e)}")
            return None

    def get_viewpoint_confidence(self, detected_objects: List[Dict]) -> Tuple[str, float]:
        """
        獲取視角檢測結果及其信心度

        Args:
            detected_objects: 檢測到的物件列表

        Returns:
            Tuple[str, float]: (視角類型, 信心度)
        """
        try:
            return self.viewpoint_detector.get_viewpoint_confidence(detected_objects)
        except ViewpointDetectionError as e:
            self.logger.warning(f"Error getting viewpoint confidence: {str(e)}")
            return "eye_level", 0.5

    def get_supported_cultures(self) -> List[str]:
        """
        獲取所有支援的文化語境列表

        Returns:
            List[str]: 支援的文化語境名稱列表
        """
        return self.cultural_context_analyzer.get_supported_cultures()

    def has_cultural_context(self, cultural_context: str) -> bool:
        """
        檢查是否支援指定的文化語境

        Args:
            cultural_context: 文化語境名稱

        Returns:
            bool: 是否支援該文化語境
        """
        return self.cultural_context_analyzer.has_cultural_context(cultural_context)

    def validate_text_quality(self, text: str) -> Dict[str, bool]:
        """
        驗證文本質量

        Args:
            text: 要驗證的文本

        Returns:
            Dict[str, bool]: 質量檢查結果
        """
        try:
            return self.text_formatter.validate_text_quality(text)
        except TextFormattingError as e:
            self.logger.warning(f"Error validating text quality: {str(e)}")
            return {"error": True}

    def get_text_statistics(self, text: str) -> Dict[str, int]:
        """
        獲取文本統計信息

        Args:
            text: 要分析的文本

        Returns:
            Dict[str, int]: 文本統計信息
        """
        try:
            return self.text_formatter.get_text_statistics(text)
        except TextFormattingError as e:
            self.logger.warning(f"Error getting text statistics: {str(e)}")
            return {"characters": 0, "words": 0, "sentences": 0}

    def reload_templates(self):
        """
        重新載入所有模板
        """
        try:
            self.template_manager.reload_templates()
            self.logger.info("Templates reloaded successfully")
        except (TemplateLoadingError, TemplateFillError) as e:
            self.logger.error(f"Error reloading templates: {str(e)}")
            raise EnhancedSceneDescriberError(f"Failed to reload templates: {str(e)}") from e

    def get_configuration(self) -> Dict[str, Any]:
        """
        獲取當前配置信息

        Returns:
            Dict[str, Any]: 配置信息字典
        """
        try:
            return {
                "scene_types_count": len(self.scene_types),
                "viewpoint_detector_config": self.viewpoint_detector.viewpoint_params,
                "object_generator_config": self.object_description_generator.get_configuration(),
                "supported_cultures": self.cultural_context_analyzer.get_supported_cultures(),
                "template_categories": self.template_manager.get_template_categories()
            }
        except Exception as e:
            self.logger.warning(f"Error getting configuration: {str(e)}")
            return {"error": str(e)}

    def _initialize_fallback_components(self):
        """備用組件初始化"""
        try:
            self.region_analyzer = RegionAnalyzer()
            self.object_description_generator = ObjectDescriptionGenerator(
                region_analyzer=self.region_analyzer
            )
        except Exception as e:
            self.logger.error(f"Fallback component initialization failed: {str(e)}")