Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,599 Bytes
e6a18b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
import logging
import traceback
from typing import Dict, List, Tuple, Optional
import numpy as np
class ViewpointDetectionError(Exception):
"""Custom exception for errors during viewpoint detection."""
pass
class ViewpointDetector:
"""
視角檢測器 - 分析物體分布模式以識別圖像視角類型
此class負責通過分析檢測到的物體在圖像中的空間分布、大小變化和位置模式,
來確定圖像的拍攝視角。特別針對行人密集的十字路口場景進行了優化。
"""
def __init__(self,
aerial_threshold: float = 0.7,
aerial_size_variance_threshold: float = 0.15,
low_angle_threshold: float = 0.3,
vertical_size_ratio_threshold: float = 1.8,
elevated_threshold: float = 0.6,
elevated_top_threshold: float = 0.3,
crosswalk_position_tolerance: float = 0.1,
crosswalk_axis_tolerance: float = 0.15,
min_people_for_crosswalk: int = 8,
min_people_for_aerial: int = 10):
"""
初始化視角檢測器
Args:
aerial_threshold: 空中視角檢測的物體密度閾值
aerial_size_variance_threshold: 空中視角的大小變異閾值
low_angle_threshold: 低角度視角的底部分布閾值
vertical_size_ratio_threshold: 垂直大小比例閾值
elevated_threshold: 高位視角的物體分布閾值
elevated_top_threshold: 高位視角的頂部物體閾值
crosswalk_position_tolerance: 十字路口位置容差
crosswalk_axis_tolerance: 十字路口軸線容差
min_people_for_crosswalk: 檢測十字路口所需的最少人數
min_people_for_aerial: 檢測空中視角所需的最少人數
"""
self.logger = logging.getLogger(self.__class__.__name__)
# 視角檢測參數配置
self.viewpoint_params = {
"aerial_threshold": aerial_threshold,
"aerial_size_variance_threshold": aerial_size_variance_threshold,
"low_angle_threshold": low_angle_threshold,
"vertical_size_ratio_threshold": vertical_size_ratio_threshold,
"elevated_threshold": elevated_threshold,
"elevated_top_threshold": elevated_top_threshold,
"crosswalk_position_tolerance": crosswalk_position_tolerance,
"crosswalk_axis_tolerance": crosswalk_axis_tolerance,
"min_people_for_crosswalk": min_people_for_crosswalk,
"min_people_for_aerial": min_people_for_aerial
}
self.logger.info("ViewpointDetector initialized with parameters: %s", self.viewpoint_params)
def detect_viewpoint(self, detected_objects: List[Dict]) -> str:
"""
檢測圖像視角類型
Args:
detected_objects: 檢測到的物體列表,每個物體應包含位置、大小等信息
Returns:
str: 檢測到的視角類型 ('aerial', 'low_angle', 'elevated', 'eye_level')
"""
try:
if not detected_objects:
self.logger.warning("No detected objects provided for viewpoint detection")
return "eye_level"
self.logger.info(f"Starting viewpoint detection with {len(detected_objects)} objects")
# 優先檢測十字路口模式(通常為空中視角)
if self._detect_crosswalk_pattern(detected_objects):
self.logger.info("Crosswalk pattern detected - returning aerial viewpoint")
return "aerial"
# 檢測基於行人分布的空中視角
if self._detect_aerial_from_pedestrian_distribution(detected_objects):
self.logger.info("Aerial viewpoint detected from pedestrian distribution")
return "aerial"
# 標準視角檢測流程
return self._detect_standard_viewpoint(detected_objects)
except Exception as e:
error_msg = f"Error during viewpoint detection: {str(e)}"
self.logger.error(f"{error_msg}\n{traceback.format_exc()}")
return "eye_level" # 返回默認值
def _detect_crosswalk_pattern(self, detected_objects: List[Dict]) -> bool:
"""
檢測十字路口/斑馬線模式
Args:
detected_objects: 檢測到的物體列表
Returns:
bool: 是否檢測到十字路口模式
"""
try:
people_objs = [obj for obj in detected_objects if obj.get("class_id") == 0]
if len(people_objs) < self.viewpoint_params["min_people_for_crosswalk"]:
return False
# 提取行人位置
people_positions = []
for obj in people_objs:
if "normalized_center" in obj:
people_positions.append(obj["normalized_center"])
if len(people_positions) < 4:
return False
# 檢測十字形分布
if self._detect_cross_pattern(people_positions):
self.logger.debug("Cross pattern detected in pedestrian positions")
return True
# 檢測線性聚類分布
if self._detect_linear_crosswalk_clusters(people_positions):
self.logger.debug("Linear crosswalk clusters detected")
return True
return False
except Exception as e:
self.logger.warning(f"Error in crosswalk pattern detection: {str(e)}")
return False
def _detect_cross_pattern(self, positions: List[Tuple[float, float]]) -> bool:
"""
檢測十字形分布模式
Args:
positions: 物體位置列表 [(x, y), ...]
Returns:
bool: 是否檢測到十字形模式
"""
try:
x_coords = [pos[0] for pos in positions]
y_coords = [pos[1] for pos in positions]
x_range = max(x_coords) - min(x_coords)
y_range = max(y_coords) - min(y_coords)
# 檢查 x 和 y 方向都有較大範圍且範圍相似
if x_range <= 0.5 or y_range <= 0.5:
return False
if not (0.7 < (x_range / y_range) < 1.3):
return False
# 計算到中心點的距離並檢查軸線分布
center_x = np.mean(x_coords)
center_y = np.mean(y_coords)
close_to_axis_count = 0
axis_tolerance = self.viewpoint_params["crosswalk_axis_tolerance"]
for x, y in positions:
x_distance_to_center = abs(x - center_x)
y_distance_to_center = abs(y - center_y)
# 檢查是否接近水平或垂直軸線
if x_distance_to_center < axis_tolerance or y_distance_to_center < axis_tolerance:
close_to_axis_count += 1
# 如果足夠多的點接近軸線,認為是十字路口
axis_ratio = close_to_axis_count / len(positions)
return axis_ratio >= 0.6
except Exception as e:
self.logger.warning(f"Error detecting cross pattern: {str(e)}")
return False
def _detect_linear_crosswalk_clusters(self, positions: List[Tuple[float, float]]) -> bool:
"""
檢測線性聚類分布(交叉的斑馬線)
Args:
positions: 物體位置列表
Returns:
bool: 是否檢測到線性交叉模式
"""
try:
x_coords = [pos[0] for pos in positions]
y_coords = [pos[1] for pos in positions]
# 檢測 x 和 y 方向的聚類
x_clusters = self._detect_linear_clusters(x_coords)
y_clusters = self._detect_linear_clusters(y_coords)
# 如果在 x 和 y 方向上都有多個聚類,可能是交叉的斑馬線
return len(x_clusters) >= 2 and len(y_clusters) >= 2
except Exception as e:
self.logger.warning(f"Error detecting linear crosswalk clusters: {str(e)}")
return False
def _detect_linear_clusters(self, coords: List[float], threshold: float = 0.05) -> List[List[float]]:
"""
檢測坐標中的線性聚類
Args:
coords: 一維坐標列表
threshold: 聚類閾值
Returns:
List[List[float]]: 聚類列表
"""
if not coords:
return []
try:
sorted_coords = sorted(coords)
clusters = []
current_cluster = [sorted_coords[0]]
for i in range(1, len(sorted_coords)):
if sorted_coords[i] - sorted_coords[i-1] < threshold:
current_cluster.append(sorted_coords[i])
else:
if len(current_cluster) >= 2:
clusters.append(current_cluster)
current_cluster = [sorted_coords[i]]
# 添加最後一個聚類
if len(current_cluster) >= 2:
clusters.append(current_cluster)
return clusters
except Exception as e:
self.logger.warning(f"Error in linear cluster detection: {str(e)}")
return []
def _detect_aerial_from_pedestrian_distribution(self, detected_objects: List[Dict]) -> bool:
"""
基於行人分布檢測空中視角
Args:
detected_objects: 檢測到的物體列表
Returns:
bool: 是否為空中視角
"""
try:
people_objs = [obj for obj in detected_objects if obj.get("class_id") == 0]
if len(people_objs) < self.viewpoint_params["min_people_for_aerial"]:
return False
# 統計不同區域的行人數量
people_region_counts = {}
for obj in people_objs:
region = obj.get("region", "unknown")
people_region_counts[region] = people_region_counts.get(region, 0) + 1
# 檢查行人是否分布在多個區域
regions_with_multiple_people = sum(1 for count in people_region_counts.values() if count >= 2)
if regions_with_multiple_people < 4:
return False
# 檢查行人分布的均勻性
region_counts = list(people_region_counts.values())
if not region_counts:
return False
region_counts_variance = np.var(region_counts)
region_counts_mean = np.mean(region_counts)
if region_counts_mean > 0:
variation_coefficient = region_counts_variance / region_counts_mean
return variation_coefficient < 0.5
return False
except Exception as e:
self.logger.warning(f"Error in aerial detection from pedestrian distribution: {str(e)}")
return False
def _detect_standard_viewpoint(self, detected_objects: List[Dict]) -> str:
"""
標準視角檢測流程
Args:
detected_objects: 檢測到的物體列表
Returns:
str: 檢測到的視角類型
"""
try:
# 計算基本統計指標
metrics = self._calculate_viewpoint_metrics(detected_objects)
# 基於計算的指標判斷視角類型
if self._is_aerial_viewpoint(metrics):
return "aerial"
elif self._is_low_angle_viewpoint(metrics):
return "low_angle"
elif self._is_elevated_viewpoint(metrics):
return "elevated"
else:
return "eye_level"
except Exception as e:
self.logger.warning(f"Error in standard viewpoint detection: {str(e)}")
return "eye_level"
def _calculate_viewpoint_metrics(self, detected_objects: List[Dict]) -> Dict:
"""
計算視角檢測所需的各項指標
Args:
detected_objects: 檢測到的物體列表
Returns:
Dict: 包含各項指標的字典
"""
total_objects = len(detected_objects)
top_region_count = 0
bottom_region_count = 0
sizes = []
height_width_ratios = []
try:
for obj in detected_objects:
# 統計頂部和底部區域的物體數量
region = obj.get("region", "")
if "top" in region:
top_region_count += 1
elif "bottom" in region:
bottom_region_count += 1
# 收集大小信息
if "normalized_area" in obj:
sizes.append(obj["normalized_area"])
# 計算高寬比
if "normalized_size" in obj:
width, height = obj["normalized_size"]
if width > 0:
height_width_ratios.append(height / width)
# 計算比例
top_ratio = top_region_count / total_objects if total_objects > 0 else 0
bottom_ratio = bottom_region_count / total_objects if total_objects > 0 else 0
# 計算大小變異係數
size_variance_coefficient = 0
if sizes and len(sizes) > 1:
mean_size = np.mean(sizes)
if mean_size > 0:
size_variance = np.var(sizes)
size_variance_coefficient = size_variance / (mean_size ** 2)
# 計算平均高寬比
avg_height_width_ratio = np.mean(height_width_ratios) if height_width_ratios else 1.0
metrics = {
"top_ratio": top_ratio,
"bottom_ratio": bottom_ratio,
"size_variance_coefficient": size_variance_coefficient,
"avg_height_width_ratio": avg_height_width_ratio,
"total_objects": total_objects
}
self.logger.debug(f"Calculated viewpoint metrics: {metrics}")
return metrics
except Exception as e:
self.logger.error(f"Error calculating viewpoint metrics: {str(e)}")
return {
"top_ratio": 0,
"bottom_ratio": 0,
"size_variance_coefficient": 0,
"avg_height_width_ratio": 1.0,
"total_objects": total_objects
}
def _is_aerial_viewpoint(self, metrics: Dict) -> bool:
"""判斷是否為空中視角"""
return (metrics["size_variance_coefficient"] < self.viewpoint_params["aerial_size_variance_threshold"] and
metrics["bottom_ratio"] < 0.3 and
metrics["top_ratio"] > self.viewpoint_params["aerial_threshold"])
def _is_low_angle_viewpoint(self, metrics: Dict) -> bool:
"""判斷是否為低角度視角"""
return (metrics["avg_height_width_ratio"] > self.viewpoint_params["vertical_size_ratio_threshold"] and
metrics["top_ratio"] > self.viewpoint_params["low_angle_threshold"])
def _is_elevated_viewpoint(self, metrics: Dict) -> bool:
"""判斷是否為高位視角"""
return (metrics["bottom_ratio"] > self.viewpoint_params["elevated_threshold"] and
metrics["top_ratio"] < self.viewpoint_params["elevated_top_threshold"])
def get_viewpoint_confidence(self, detected_objects: List[Dict]) -> Tuple[str, float]:
"""
獲取視角檢測結果及其信心度
Args:
detected_objects: 檢測到的物體列表
Returns:
Tuple[str, float]: (視角類型, 信心度)
"""
try:
viewpoint = self.detect_viewpoint(detected_objects)
# 基於檢測條件計算信心度
if viewpoint == "aerial" and self._detect_crosswalk_pattern(detected_objects):
confidence = 0.95 # 十字路口模式有很高信心度
elif viewpoint == "aerial":
confidence = 0.8
elif viewpoint == "eye_level":
confidence = 0.7 # 默認視角信心度較低
else:
confidence = 0.85
self.logger.info(f"Viewpoint detection result: {viewpoint} (confidence: {confidence:.2f})")
return viewpoint, confidence
except Exception as e:
self.logger.warning("Using fallback viewpoint due to detection error")
return "eye_level", 0.3
|