Spaces:
Running
on
Zero
Running
on
Zero
File size: 88,682 Bytes
e6a18b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 |
import logging
import traceback
import re
import random
from typing import Dict, List, Optional, Any
import json
from scene_detail_templates import SCENE_DETAIL_TEMPLATES
from object_template_fillers import OBJECT_TEMPLATE_FILLERS
from viewpoint_templates import VIEWPOINT_TEMPLATES
from cultural_templates import CULTURAL_TEMPLATES
from lighting_conditions import LIGHTING_CONDITIONS
from confidence_templates import CONFIDENCE_TEMPLATES
class TemplateLoadingError(Exception):
"""模板載入或處理相關錯誤的自訂例外"""
pass
class TemplateFillError(Exception):
pass
class TemplateManager:
"""
模板管理器 - 負責描述模板的載入、管理和填充
此class 管理所有用於場景描述生成的模板資源,提供模板填充功能,
並根據場景類型、物體檢測結果和上下文的資訊給出適當的描述內容。
"""
def __init__(self, custom_templates_db: Optional[Dict] = None):
"""
初始化模板管理器
Args:
custom_templates_db: 可選的自定義模板數據庫,如果提供則會與默認模板合併
"""
self.logger = logging.getLogger(self.__class__.__name__)
self.template_registry = {}
try:
# 載入模板數據庫
self.templates = self._load_templates()
# 如果提供了自定義模板,則進行合併
if custom_templates_db:
self._merge_custom_templates(custom_templates_db)
# 驗證模板完整性
self._validate_templates()
self.logger.info("TemplateManager initialized successfully with %d template categories",
len(self.templates))
except Exception as e:
error_msg = f"Failed to initialize TemplateManager: {str(e)}"
self.logger.error(f"{error_msg}\n{traceback.format_exc()}")
# 初始化基本的空模板
self.templates = self._initialize_fallback_templates()
def _load_templates(self) -> Dict:
"""
載入所有描述模板
Returns:
Dict: 包含所有模板類別的字典
"""
try:
templates = {}
# 載入場景詳細描述模板
self.logger.debug("Loading scene detail templates")
try:
templates["scene_detail_templates"] = SCENE_DETAIL_TEMPLATES
except NameError:
self.logger.warning("SCENE_DETAIL_TEMPLATES not defined, using empty dict")
templates["scene_detail_templates"] = {}
# 載入物體模板填充器
self.logger.debug("Loading object template fillers")
try:
templates["object_template_fillers"] = OBJECT_TEMPLATE_FILLERS
except NameError:
self.logger.warning("OBJECT_TEMPLATE_FILLERS not defined, using empty dict")
templates["object_template_fillers"] = {}
# 載入視角模板
self.logger.debug("Loading viewpoint templates")
try:
templates["viewpoint_templates"] = VIEWPOINT_TEMPLATES
except NameError:
self.logger.warning("VIEWPOINT_TEMPLATES not defined, using empty dict")
templates["viewpoint_templates"] = {}
# 載入文化模板
self.logger.debug("Loading cultural templates")
try:
templates["cultural_templates"] = CULTURAL_TEMPLATES
except NameError:
self.logger.warning("CULTURAL_TEMPLATES not defined, using empty dict")
templates["cultural_templates"] = {}
# 從照明條件模組載入照明模板
self.logger.debug("Loading lighting templates")
try:
templates["lighting_templates"] = self._extract_lighting_templates()
except Exception as e:
self.logger.warning(f"Failed to extract lighting templates: {str(e)}")
templates["lighting_templates"] = {}
# 載入信心度模板
self.logger.debug("Loading confidence templates")
try:
templates["confidence_templates"] = CONFIDENCE_TEMPLATES
except NameError:
self.logger.warning("CONFIDENCE_TEMPLATES not defined, using empty dict")
templates["confidence_templates"] = {}
# 初始化默認模板(當成備份)
self._initialize_default_templates(templates)
self.logger.info("Successfully loaded %d template categories", len(templates))
return templates
except Exception as e:
error_msg = f"Unexpected error during template loading: {str(e)}"
self.logger.error(f"{error_msg}\n{traceback.format_exc()}")
# 返回基本模板
return self._initialize_fallback_templates()
def _initialize_template_registry(self) -> Dict[str, Dict[str, Any]]:
"""
初始化模板,包含各種場景類型的結構化模板
Returns:
Dict[str, Dict[str, Any]]: 模板註冊表字典
"""
try:
template_registry = {
"indoor_detailed": {
"scene_type": "indoor",
"complexity": "high",
"structure": [
{
"type": "opening",
"content": "This indoor scene presents a comprehensive view of a well-organized living space."
},
{
"type": "zone_analysis",
"priority": "functional_areas",
"detail_level": "detailed"
},
{
"type": "object_summary",
"grouping": "by_category",
"include_counts": True
},
{
"type": "conclusion",
"style": "analytical"
}
]
},
"indoor_moderate": {
"scene_type": "indoor",
"complexity": "medium",
"structure": [
{
"type": "opening",
"content": "The indoor environment displays organized functional areas."
},
{
"type": "zone_analysis",
"priority": "main_areas",
"detail_level": "moderate"
},
{
"type": "object_summary",
"grouping": "by_function",
"include_counts": False
},
{
"type": "conclusion",
"style": "descriptive"
}
]
},
"indoor_simple": {
"scene_type": "indoor",
"complexity": "low",
"structure": [
{
"type": "opening",
"content": "An indoor space with visible furniture and household items."
},
{
"type": "zone_analysis",
"priority": "basic_areas",
"detail_level": "simple"
},
{
"type": "object_summary",
"grouping": "general",
"include_counts": False
}
]
},
"outdoor_detailed": {
"scene_type": "outdoor",
"complexity": "high",
"structure": [
{
"type": "opening",
"content": "This outdoor scene captures a dynamic urban environment with multiple activity zones."
},
{
"type": "zone_analysis",
"priority": "activity_areas",
"detail_level": "detailed"
},
{
"type": "object_summary",
"grouping": "by_location",
"include_counts": True
},
{
"type": "conclusion",
"style": "environmental"
}
]
},
"outdoor_moderate": {
"scene_type": "outdoor",
"complexity": "medium",
"structure": [
{
"type": "opening",
"content": "The outdoor scene shows organized public spaces and pedestrian areas."
},
{
"type": "zone_analysis",
"priority": "public_areas",
"detail_level": "moderate"
},
{
"type": "object_summary",
"grouping": "by_type",
"include_counts": False
},
{
"type": "conclusion",
"style": "observational"
}
]
},
"outdoor_simple": {
"scene_type": "outdoor",
"complexity": "low",
"structure": [
{
"type": "opening",
"content": "An outdoor area with pedestrians and urban elements."
},
{
"type": "zone_analysis",
"priority": "basic_areas",
"detail_level": "simple"
},
{
"type": "object_summary",
"grouping": "general",
"include_counts": False
}
]
},
"commercial_detailed": {
"scene_type": "commercial",
"complexity": "high",
"structure": [
{
"type": "opening",
"content": "This commercial environment demonstrates organized retail and customer service areas."
},
{
"type": "zone_analysis",
"priority": "service_areas",
"detail_level": "detailed"
},
{
"type": "object_summary",
"grouping": "by_function",
"include_counts": True
},
{
"type": "conclusion",
"style": "business"
}
]
},
"transportation_detailed": {
"scene_type": "transportation",
"complexity": "high",
"structure": [
{
"type": "opening",
"content": "This transportation hub features organized passenger facilities and transit infrastructure."
},
{
"type": "zone_analysis",
"priority": "transit_areas",
"detail_level": "detailed"
},
{
"type": "object_summary",
"grouping": "by_transit_function",
"include_counts": True
},
{
"type": "conclusion",
"style": "infrastructure"
}
]
},
"default": {
"scene_type": "general",
"complexity": "medium",
"structure": [
{
"type": "opening",
"content": "The scene displays various elements organized across functional areas."
},
{
"type": "zone_analysis",
"priority": "general_areas",
"detail_level": "moderate"
},
{
"type": "object_summary",
"grouping": "general",
"include_counts": False
},
{
"type": "conclusion",
"style": "general"
}
]
}
}
self.logger.debug(f"Initialized template registry with {len(template_registry)} templates")
return template_registry
except Exception as e:
error_msg = f"Error initializing template registry: {str(e)}"
self.logger.error(f"{error_msg}\n{traceback.format_exc()}")
# 返回最基本的註冊表
return {
"default": {
"scene_type": "general",
"complexity": "low",
"structure": [
{
"type": "opening",
"content": "Scene analysis completed with identified objects and areas."
}
]
}
}
def get_template_by_scene_type(self, scene_type: str, detected_objects: List[Dict],
functional_zones: Dict) -> str:
"""
根據場景類型選擇合適的模板並進行標準化處理
Args:
scene_type: 場景類型
detected_objects: 檢測到的物件列表
functional_zones: 功能區域字典
Returns:
str: 標準化後的模板字符串
"""
try:
# 獲取場景的物件統計信息
object_stats = self._analyze_scene_composition(detected_objects)
zone_count = len(functional_zones) if functional_zones else 0
# 根據場景複雜度和類型選擇模板
if scene_type in self.templates:
scene_templates = self.templates[scene_type]
# 根據複雜度選擇合適的模板變體
if zone_count >= 3 and object_stats.get("total_objects", 0) >= 10:
template_key = "complex"
elif zone_count >= 2 or object_stats.get("total_objects", 0) >= 5:
template_key = "moderate"
else:
template_key = "simple"
if template_key in scene_templates:
raw_template = scene_templates[template_key]
else:
raw_template = scene_templates.get("default", scene_templates[list(scene_templates.keys())[0]])
else:
# 如果沒有特定場景的模板,使用通用模板
raw_template = self._get_generic_template(object_stats, zone_count)
# 標準化模板中的佔位符和格式
standardized_template = self._standardize_template_format(raw_template)
return standardized_template
except Exception as e:
logger.error(f"Error selecting template for scene type '{scene_type}': {str(e)}")
return self._get_fallback_template()
def _analyze_scene_composition(self, detected_objects: List[Dict]) -> Dict:
"""
分析場景組成以確定模板複雜度
Args:
detected_objects: 檢測到的物件列表
Returns:
Dict: 場景組成統計信息
"""
try:
total_objects = len(detected_objects)
# 統計不同類型的物件
object_categories = {}
for obj in detected_objects:
class_name = obj.get("class_name", "unknown")
object_categories[class_name] = object_categories.get(class_name, 0) + 1
# 計算場景多樣性
unique_categories = len(object_categories)
return {
"total_objects": total_objects,
"unique_categories": unique_categories,
"category_distribution": object_categories,
"complexity_score": min(total_objects * 0.3 + unique_categories * 0.7, 10)
}
except Exception as e:
logger.warning(f"Error analyzing scene composition: {str(e)}")
return {"total_objects": 0, "unique_categories": 0, "complexity_score": 0}
def _get_generic_template(self, object_stats: Dict, zone_count: int) -> str:
"""
獲取通用模板
Args:
object_stats: 物件統計信息
zone_count: 功能區域數量
Returns:
str: 通用模板字符串
"""
try:
complexity_score = object_stats.get("complexity_score", 0)
if complexity_score >= 7 or zone_count >= 3:
return "This scene presents a comprehensive view featuring {functional_area} with {primary_objects}. The spatial organization demonstrates {spatial_arrangement} across multiple {activity_areas}, creating a dynamic environment with diverse elements and clear functional zones."
elif complexity_score >= 4 or zone_count >= 2:
return "The scene displays {functional_area} containing {primary_objects}. The arrangement shows {spatial_organization} with distinct areas serving different purposes within the overall space."
else:
return "A {scene_description} featuring {primary_objects} arranged in {basic_layout} within the visible area."
except Exception as e:
logger.warning(f"Error getting generic template: {str(e)}")
return self._get_fallback_template()
def _get_fallback_template(self) -> str:
"""
獲取備用模板
Returns:
str: 備用模板字符串
"""
return "A scene featuring various elements and organized areas of activity within the visible space."
def _standardize_template_format(self, template: str) -> str:
"""
標準化模板格式,確保佔位符和表達方式符合自然語言要求
Args:
template: 原始模板字符串
Returns:
str: 標準化後的模板字符串
"""
try:
if not template:
return self._get_fallback_template()
import re
standardized = template
# 標準化佔位符格式,移除技術性標記
placeholder_mapping = {
r'\{zone_\d+\}': '{functional_area}',
r'\{object_group_\d+\}': '{primary_objects}',
r'\{region_\d+\}': '{spatial_area}',
r'\{category_\d+\}': '{object_category}',
r'\{area_\d+\}': '{activity_area}',
r'\{section_\d+\}': '{scene_section}'
}
for pattern, replacement in placeholder_mapping.items():
standardized = re.sub(pattern, replacement, standardized)
# 標準化常見的技術性術語
term_replacements = {
'functional_zones': 'areas of activity',
'object_detection': 'visible elements',
'category_regions': 'organized sections',
'spatial_distribution': 'arrangement throughout the space',
'viewpoint_analysis': 'perspective view'
}
for tech_term, natural_term in term_replacements.items():
standardized = standardized.replace(tech_term, natural_term)
# 確保模板語法的自然性
standardized = self._improve_template_readability(standardized)
return standardized
except Exception as e:
logger.warning(f"Error standardizing template format: {str(e)}")
return template if template else self._get_fallback_template()
def _improve_template_readability(self, template: str) -> str:
"""
改善模板的可讀性和自然性
Args:
template: 模板字符串
Returns:
str: 改善後的模板字符串
"""
try:
import re
# 移除多餘的空格和換行
improved = re.sub(r'\s+', ' ', template).strip()
# 改善句子連接
improved = improved.replace(' . ', '. ')
improved = improved.replace(' , ', ', ')
improved = improved.replace(' ; ', '; ')
# 確保適當的句號結尾
if improved and not improved.endswith(('.', '!', '?')):
improved += '.'
# 改善常見的表達問題
readability_fixes = [
(r'\bthe the\b', 'the'),
(r'\ba a\b', 'a'),
(r'\ban an\b', 'an'),
(r'\bwith with\b', 'with'),
(r'\bin in\b', 'in'),
(r'\bof of\b', 'of'),
(r'\band and\b', 'and')
]
for pattern, replacement in readability_fixes:
improved = re.sub(pattern, replacement, improved, flags=re.IGNORECASE)
return improved
except Exception as e:
logger.warning(f"Error improving template readability: {str(e)}")
return template
def _extract_lighting_templates(self) -> Dict:
"""
從照明條件模組提取照明描述模板
Returns:
Dict: 照明模板字典
"""
try:
lighting_templates = {}
# 從 LIGHTING_CONDITIONS 提取時間描述
time_descriptions = LIGHTING_CONDITIONS.get("time_descriptions", {})
for time_key, time_data in time_descriptions.items():
if isinstance(time_data, dict) and "general" in time_data:
lighting_templates[time_key] = time_data["general"]
else:
# 如果數據結構不符合預期,使用備用描述
lighting_templates[time_key] = f"The scene is captured during {time_key.replace('_', ' ')}."
# 確保至少有基本的照明模板
if not lighting_templates:
self.logger.warning("No lighting templates found, using defaults")
lighting_templates = self._get_default_lighting_templates()
self.logger.debug("Extracted %d lighting templates", len(lighting_templates))
return lighting_templates
except Exception as e:
self.logger.warning(f"Error extracting lighting templates: {str(e)}, using defaults")
return self._get_default_lighting_templates()
def _get_default_lighting_templates(self) -> Dict:
"""獲取默認照明模板"""
return {
"day_clear": "The scene is captured during clear daylight conditions.",
"day_overcast": "The scene is captured during overcast daylight.",
"night": "The scene is captured at night with artificial lighting.",
"dawn": "The scene is captured during dawn with soft natural lighting.",
"dusk": "The scene is captured during dusk with diminishing natural light.",
"unknown": "The lighting conditions are not clearly identifiable."
}
def _initialize_default_templates(self, templates: Dict):
"""
初始化默認模板作為備份機制
Args:
templates: 要檢查和補充的模板字典
"""
try:
# 置信度模板備份
if "confidence_templates" not in templates or not templates["confidence_templates"]:
templates["confidence_templates"] = {
"high": "{description} {details}",
"medium": "This appears to be {description} {details}",
"low": "This might be {description}, but the confidence is low. {details}"
}
# 場景詳細模板備份
if "scene_detail_templates" not in templates or not templates["scene_detail_templates"]:
templates["scene_detail_templates"] = {
"default": ["A scene with various elements and objects."]
}
# 物體填充模板備份
if "object_template_fillers" not in templates or not templates["object_template_fillers"]:
templates["object_template_fillers"] = {
"default": ["various items", "different objects", "multiple elements"]
}
# 視角模板備份
if "viewpoint_templates" not in templates or not templates["viewpoint_templates"]:
templates["viewpoint_templates"] = {
"eye_level": {
"prefix": "From eye level, ",
"observation": "the scene is viewed straight ahead.",
"short_desc": "at eye level"
},
"aerial": {
"prefix": "From above, ",
"observation": "the scene is viewed from a bird's-eye perspective.",
"short_desc": "from above"
},
"low_angle": {
"prefix": "From a low angle, ",
"observation": "the scene is viewed from below looking upward.",
"short_desc": "from below"
},
"elevated": {
"prefix": "From an elevated position, ",
"observation": "the scene is viewed from a higher vantage point.",
"short_desc": "from an elevated position"
}
}
# 文化模板備份
if "cultural_templates" not in templates or not templates["cultural_templates"]:
templates["cultural_templates"] = {
"asian": {
"elements": ["traditional architectural elements", "cultural signage", "Asian design features"],
"description": "The scene displays distinctive Asian cultural characteristics with {elements}."
},
"european": {
"elements": ["classical architecture", "European design elements", "historic features"],
"description": "The scene exhibits European architectural and cultural elements including {elements}."
}
}
self.logger.debug("Default templates initialized as backup")
except Exception as e:
self.logger.error(f"Error initializing default templates: {str(e)}")
def _merge_custom_templates(self, custom_templates: Dict):
"""
合併自定義模板到現有模板庫
Args:
custom_templates: 自定義模板字典
"""
try:
for template_category, custom_content in custom_templates.items():
if template_category in self.templates:
if isinstance(self.templates[template_category], dict) and isinstance(custom_content, dict):
self.templates[template_category].update(custom_content)
self.logger.debug(f"Merged custom templates for category: {template_category}")
else:
self.templates[template_category] = custom_content
self.logger.debug(f"Replaced templates for category: {template_category}")
else:
self.templates[template_category] = custom_content
self.logger.debug(f"Added new template category: {template_category}")
self.logger.info("Successfully merged custom templates")
except Exception as e:
self.logger.warning(f"Error merging custom templates: {str(e)}")
def _validate_templates(self):
"""
驗證模板完整性和有效性
"""
try:
required_categories = [
"scene_detail_templates",
"object_template_fillers",
"viewpoint_templates",
"cultural_templates",
"lighting_templates",
"confidence_templates"
]
missing_categories = []
for category in required_categories:
if category not in self.templates:
missing_categories.append(category)
elif not self.templates[category]:
self.logger.warning(f"Template category '{category}' is empty")
if missing_categories:
error_msg = f"Missing required template categories: {missing_categories}"
self.logger.warning(error_msg)
# 為缺失的類別創建空模板
for category in missing_categories:
self.templates[category] = {}
# 驗證視角模板結構
self._validate_viewpoint_templates()
# 驗證文化模板結構
self._validate_cultural_templates()
self.logger.debug("Template validation completed successfully")
except Exception as e:
error_msg = f"Template validation failed: {str(e)}"
self.logger.error(f"{error_msg}\n{traceback.format_exc()}")
def _validate_viewpoint_templates(self):
"""驗證視角模板結構"""
viewpoint_templates = self.templates.get("viewpoint_templates", {})
for viewpoint, template_data in viewpoint_templates.items():
if not isinstance(template_data, dict):
self.logger.warning(f"Invalid viewpoint template structure for '{viewpoint}'")
continue
required_keys = ["prefix", "observation"]
for key in required_keys:
if key not in template_data:
self.logger.warning(f"Missing '{key}' in viewpoint template '{viewpoint}'")
def _validate_cultural_templates(self):
"""驗證文化模板結構"""
cultural_templates = self.templates.get("cultural_templates", {})
for culture, template_data in cultural_templates.items():
if not isinstance(template_data, dict):
self.logger.warning(f"Invalid cultural template structure for '{culture}'")
continue
if "elements" not in template_data or "description" not in template_data:
self.logger.warning(f"Missing required keys in cultural template '{culture}'")
def get_template(self, category: str, key: Optional[str] = None) -> Any:
"""
獲取指定類別的模板
Args:
category: 模板類別名稱
key: 可選的具體模板鍵值
Returns:
Any: 請求的模板內容,如果不存在則返回空字典或空字符串
"""
try:
if category not in self.templates:
self.logger.warning(f"Template category '{category}' not found")
return {} if key is None else ""
if key is None:
return self.templates[category]
category_templates = self.templates[category]
if not isinstance(category_templates, dict):
self.logger.warning(f"Template category '{category}' is not a dictionary")
return ""
if key not in category_templates:
self.logger.warning(f"Template key '{key}' not found in category '{category}'")
return ""
return category_templates[key]
except Exception as e:
error_msg = f"Error retrieving template {category}.{key}: {str(e)}"
self.logger.error(error_msg)
return {} if key is None else ""
def fill_template(self, template: str, detected_objects: List[Dict], scene_type: str,
places365_info: Optional[Dict] = None,
object_statistics: Optional[Dict] = None) -> str:
"""
填充模板中的佔位符,增強容錯處理
Args:
template: 包含佔位符的模板字符串
detected_objects: 檢測到的物體列表
scene_type: 場景類型
places365_info: Places365場景分類信息
object_statistics: 物體統計信息
Returns:
str: 填充後的模板字符串,確保語法正確
"""
try:
self.logger.debug(f"Filling template for scene_type: {scene_type}")
if not template or not template.strip():
return "A scene with various elements."
# 預處理模板,移除可能的問題模式
template = self._preprocess_template(template)
# 查找模板中的佔位符
placeholders = re.findall(r'\{([^}]+)\}', template)
filled_template = template
# 獲取模板填充器
fillers = self.templates.get("object_template_fillers", {})
# 基於物體統計信息生成替換內容
statistics_based_replacements = self._generate_statistics_replacements(object_statistics)
# 生成默認替換內容
default_replacements = self._generate_default_replacements()
# 添加Places365上下文信息
places365_replacements = self._generate_places365_replacements(places365_info)
# 添加功能區域信息到場景數據中以便後續使用
scene_functional_zones = None
if hasattr(self, '_current_functional_zones'):
scene_functional_zones = self._current_functional_zones
# 合併所有替換內容(優先順序是統計信息 > Places365 > 默認)
all_replacements = {**default_replacements, **places365_replacements, **statistics_based_replacements}
# 填充每個佔位符
for placeholder in placeholders:
try:
replacement = self._get_placeholder_replacement(
placeholder, fillers, all_replacements, detected_objects, scene_type
)
# 確保替換內容不為空且有意義
if not replacement or not replacement.strip():
replacement = self._get_emergency_replacement(placeholder)
filled_template = filled_template.replace(f"{{{placeholder}}}", replacement)
except Exception as placeholder_error:
self.logger.warning(f"Failed to replace placeholder '{placeholder}': {str(placeholder_error)}")
# 使用緊急替換值
emergency_replacement = self._get_emergency_replacement(placeholder)
filled_template = filled_template.replace(f"{{{placeholder}}}", emergency_replacement)
# 修復可能的語法問題
filled_template = self._postprocess_filled_template(filled_template)
self.logger.debug("Template filling completed successfully")
return filled_template
except Exception as e:
error_msg = f"Error filling template: {str(e)}"
self.logger.error(f"{error_msg}\n{traceback.format_exc()}")
# 返回安全的備用內容
return self._generate_fallback_description(scene_type, detected_objects)
def _preprocess_template(self, template: str) -> str:
"""
預處理模板,修復常見問題
Args:
template: 原始模板字符串
Returns:
str: 預處理後的模板
"""
try:
# 移除可能導致問題的模式
template = re.sub(r'\{[^}]*\}\s*,\s*\{[^}]*\}', '{combined_elements}', template)
# 確保模板不以逗號開始
template = re.sub(r'^[,\s]*', '', template)
return template.strip()
except Exception as e:
self.logger.warning(f"Error preprocessing template: {str(e)}")
return template
def _get_emergency_replacement(self, placeholder: str) -> str:
"""
獲取緊急替換值,確保不會產生語法錯誤
Args:
placeholder: 佔位符名稱
Returns:
str: 安全的替換值
"""
emergency_replacements = {
"crossing_pattern": "pedestrian walkways",
"pedestrian_behavior": "people moving through the area",
"traffic_pattern": "vehicle movement",
"scene_setting": "this location",
"urban_elements": "city features",
"street_elements": "urban components"
}
if placeholder in emergency_replacements:
return emergency_replacements[placeholder]
# 基於佔位符名稱生成合理的替換
cleaned = placeholder.replace('_', ' ')
if len(cleaned.split()) > 1:
return cleaned
else:
return f"various {cleaned}"
def _postprocess_filled_template(self, filled_template: str) -> str:
"""
後處理填充完成的模板,修復語法問題
Args:
filled_template: 填充後的模板字符串
Returns:
str: 修復後的模板字符串
"""
try:
# 修復 "In , " 模式
filled_template = re.sub(r'\bIn\s*,\s*', 'In this scene, ', filled_template)
filled_template = re.sub(r'\bAt\s*,\s*', 'At this location, ', filled_template)
filled_template = re.sub(r'\bWithin\s*,\s*', 'Within this area, ', filled_template)
# 修復連續逗號
filled_template = re.sub(r',\s*,', ',', filled_template)
# 修復開頭的逗號
filled_template = re.sub(r'^[,\s]*', '', filled_template)
# 確保首字母大寫
if filled_template and not filled_template[0].isupper():
filled_template = filled_template[0].upper() + filled_template[1:]
# 確保以句號結尾
if filled_template and not filled_template.endswith(('.', '!', '?')):
filled_template += '.'
return filled_template.strip()
except Exception as e:
self.logger.warning(f"Error postprocessing filled template: {str(e)}")
return filled_template
def _generate_fallback_description(self, scene_type: str, detected_objects: List[Dict]) -> str:
"""
生成備用描述,當模板填充完全失敗時使用
Args:
scene_type: 場景類型
detected_objects: 檢測到的物體列表
Returns:
str: 備用描述
"""
try:
object_count = len(detected_objects)
if object_count == 0:
return f"A {scene_type.replace('_', ' ')} scene."
elif object_count == 1:
return f"A {scene_type.replace('_', ' ')} scene with one visible element."
else:
return f"A {scene_type.replace('_', ' ')} scene with {object_count} visible elements."
except Exception as e:
self.logger.warning(f"Error generating fallback description: {str(e)}")
return "A scene with various elements."
def _generate_statistics_replacements(self, object_statistics: Optional[Dict]) -> Dict[str, str]:
"""
基於物體統計信息生成模板替換內容
Args:
object_statistics: 物體統計信息
Returns:
Dict[str, str]: 統計信息基礎的替換內容
"""
replacements = {}
if not object_statistics:
return replacements
try:
# 處理植物元素
if "potted plant" in object_statistics:
count = object_statistics["potted plant"]["count"]
if count == 1:
replacements["plant_elements"] = "a potted plant"
elif count <= 3:
replacements["plant_elements"] = f"{count} potted plants"
else:
replacements["plant_elements"] = f"multiple potted plants ({count} total)"
# 處理座位
if "chair" in object_statistics:
count = object_statistics["chair"]["count"]
if count == 1:
replacements["seating"] = "a chair"
elif count <= 4:
replacements["seating"] = f"{count} chairs"
else:
replacements["seating"] = f"numerous chairs ({count} total)"
# 處理人員
if "person" in object_statistics:
count = object_statistics["person"]["count"]
if count == 1:
replacements["people_and_vehicles"] = "a person"
replacements["pedestrian_flow"] = "an individual walking"
elif count <= 5:
replacements["people_and_vehicles"] = f"{count} people"
replacements["pedestrian_flow"] = f"{count} people walking"
else:
replacements["people_and_vehicles"] = f"many people ({count} individuals)"
replacements["pedestrian_flow"] = f"a crowd of {count} people"
# 處理桌子設置
if "dining table" in object_statistics:
count = object_statistics["dining table"]["count"]
if count == 1:
replacements["table_setup"] = "a dining table"
replacements["table_description"] = "a dining surface"
else:
replacements["table_setup"] = f"{count} dining tables"
replacements["table_description"] = f"{count} dining surfaces"
self.logger.debug(f"Generated {len(replacements)} statistics-based replacements")
except Exception as e:
self.logger.warning(f"Error generating statistics replacements: {str(e)}")
return replacements
def _generate_places365_replacements(self, places365_info: Optional[Dict]) -> Dict[str, str]:
"""
基於Places365信息生成模板替換內容
Args:
places365_info: Places365場景分類信息
Returns:
Dict[str, str]: Places365基礎的替換內容
"""
replacements = {}
if not places365_info or places365_info.get('confidence', 0) <= 0.35:
replacements["places365_context"] = ""
replacements["places365_atmosphere"] = ""
return replacements
try:
scene_label = places365_info.get('scene_label', '').replace('_', ' ')
attributes = places365_info.get('attributes', [])
# 生成場景上下文
if scene_label:
replacements["places365_context"] = f"characteristic of a {scene_label}"
else:
replacements["places365_context"] = ""
# 生成氛圍描述
if 'natural_lighting' in attributes:
replacements["places365_atmosphere"] = "with natural illumination"
elif 'artificial_lighting' in attributes:
replacements["places365_atmosphere"] = "under artificial lighting"
else:
replacements["places365_atmosphere"] = ""
self.logger.debug("Generated Places365-based replacements")
except Exception as e:
self.logger.warning(f"Error generating Places365 replacements: {str(e)}")
replacements["places365_context"] = ""
replacements["places365_atmosphere"] = ""
return replacements
def _generate_default_replacements(self) -> Dict[str, str]:
"""
生成默認的模板替換內容
Returns:
Dict[str, str]: 默認替換內容
"""
return {
"scene_introduction": "this scene",
"location_prefix": "this location",
"setting_description": "this setting",
"area_description": "this area",
"environment_description": "this environment",
"spatial_introduction": "this space",
# 室內相關
"furniture": "various furniture pieces",
"seating": "comfortable seating",
"electronics": "entertainment devices",
"bed_type": "a bed",
"bed_location": "room",
"bed_description": "sleeping arrangements",
"extras": "personal items",
"table_setup": "a dining table and chairs",
"table_description": "a dining surface",
"dining_items": "dining furniture and tableware",
"appliances": "kitchen appliances",
"kitchen_items": "cooking utensils and dishware",
"cooking_equipment": "cooking equipment",
"office_equipment": "work-related furniture and devices",
"desk_setup": "a desk and chair",
"computer_equipment": "electronic devices",
# 室外/城市相關
"traffic_description": "vehicles and pedestrians",
"people_and_vehicles": "people and various vehicles",
"street_elements": "urban infrastructure",
"park_features": "benches and greenery",
"outdoor_elements": "natural features",
"park_description": "outdoor amenities",
"store_elements": "merchandise displays",
"shopping_activity": "customers browse and shop",
"store_items": "products for sale",
# 高級餐廳相關
"design_elements": "elegant decor",
"lighting": "stylish lighting fixtures",
# 亞洲商業街相
"storefront_features": "compact shops",
"pedestrian_flow": "people walking",
"asian_elements": "distinctive cultural elements",
"cultural_elements": "traditional design features",
"signage": "colorful signs",
"street_activities": "busy urban activity",
# 金融區相關
"buildings": "tall buildings",
"traffic_elements": "vehicles",
"skyscrapers": "high-rise buildings",
"road_features": "wide streets",
"architectural_elements": "modern architecture",
"city_landmarks": "prominent structures",
# 十字路口相關
"crossing_pattern": "clearly marked pedestrian crossings",
"pedestrian_behavior": "careful pedestrian movement",
"pedestrian_density": "multiple groups of pedestrians",
"traffic_pattern": "well-regulated traffic flow",
"pedestrian_flow": "steady pedestrian movement",
"traffic_description": "active urban traffic",
"people_and_vehicles": "pedestrians and vehicles",
"street_elements": "urban infrastructure elements",
# 交通相關
"transit_vehicles": "public transportation vehicles",
"passenger_activity": "commuter movement",
"transportation_modes": "various transit options",
"passenger_needs": "waiting areas",
"transit_infrastructure": "transit facilities",
"passenger_movement": "commuter flow",
# 購物區相關
"retail_elements": "shops and displays",
"store_types": "various retail establishments",
"walkway_features": "pedestrian pathways",
"commercial_signage": "store signs",
"consumer_behavior": "shopping activities",
# 空中視角相關
"commercial_layout": "organized retail areas",
"pedestrian_pattern": "people movement patterns",
"gathering_features": "public gathering spaces",
"movement_pattern": "crowd flow patterns",
"urban_elements": "city infrastructure",
"public_activity": "social interaction",
# 文化特定元素
"stall_elements": "vendor booths",
"lighting_features": "decorative lights",
"food_elements": "food offerings",
"vendor_stalls": "market stalls",
"nighttime_activity": "evening commerce",
"cultural_lighting": "traditional lighting",
"night_market_sounds": "lively market sounds",
"evening_crowd_behavior": "nighttime social activity",
"architectural_elements": "cultural buildings",
"religious_structures": "sacred buildings",
"decorative_features": "ornamental designs",
"cultural_practices": "traditional activities",
"temple_architecture": "religious structures",
"sensory_elements": "atmospheric elements",
"visitor_activities": "cultural experiences",
"ritual_activities": "ceremonial practices",
"cultural_symbols": "meaningful symbols",
"architectural_style": "historical buildings",
"historic_elements": "traditional architecture",
"urban_design": "city planning elements",
"social_behaviors": "public interactions",
"european_features": "European architectural details",
"tourist_activities": "visitor activities",
"local_customs": "regional practices",
# 時間特定元素
"lighting_effects": "artificial lighting",
"shadow_patterns": "light and shadow",
"urban_features": "city elements",
"illuminated_elements": "lit structures",
"evening_activities": "nighttime activities",
"light_sources": "lighting points",
"lit_areas": "illuminated spaces",
"shadowed_zones": "darker areas",
"illuminated_signage": "bright signs",
"colorful_lighting": "multicolored lights",
"neon_elements": "neon signs",
"night_crowd_behavior": "evening social patterns",
"light_displays": "lighting installations",
"building_features": "architectural elements",
"nightlife_activities": "evening entertainment",
"lighting_modifier": "bright",
# 混合環境元素
"transitional_elements": "connecting features",
"indoor_features": "interior elements",
"outdoor_setting": "exterior spaces",
"interior_amenities": "inside comforts",
"exterior_features": "outside elements",
"inside_elements": "interior design",
"outside_spaces": "outdoor areas",
"dual_environment_benefits": "combined settings",
"passenger_activities": "waiting behaviors",
"transportation_types": "transit vehicles",
"sheltered_elements": "covered areas",
"exposed_areas": "open sections",
"waiting_behaviors": "passenger activities",
"indoor_facilities": "inside services",
"platform_features": "transit platform elements",
"transit_routines": "transportation procedures",
# 專門場所元素
"seating_arrangement": "spectator seating",
"playing_surface": "athletic field",
"sporting_activities": "sports events",
"spectator_facilities": "viewer accommodations",
"competition_space": "sports arena",
"sports_events": "athletic competitions",
"viewing_areas": "audience sections",
"field_elements": "field markings and equipment",
"game_activities": "competitive play",
"construction_equipment": "building machinery",
"building_materials": "construction supplies",
"construction_activities": "building work",
"work_elements": "construction tools",
"structural_components": "building structures",
"site_equipment": "construction gear",
"raw_materials": "building supplies",
"construction_process": "building phases",
"medical_elements": "healthcare equipment",
"clinical_activities": "medical procedures",
"facility_design": "healthcare layout",
"healthcare_features": "medical facilities",
"patient_interactions": "care activities",
"equipment_types": "medical devices",
"care_procedures": "health services",
"treatment_spaces": "clinical areas",
"educational_furniture": "learning furniture",
"learning_activities": "educational practices",
"instructional_design": "teaching layout",
"classroom_elements": "school equipment",
"teaching_methods": "educational approaches",
"student_engagement": "learning participation",
"learning_spaces": "educational areas",
"educational_tools": "teaching resources",
"knowledge_transfer": "learning exchanges"
}
def _generate_objects_summary(self, detected_objects: List[Dict]) -> str:
"""
基於檢測物件生成自然語言摘要,按重要性排序
Args:
detected_objects: 檢測到的物件列表
Returns:
str: 物件摘要描述
"""
try:
# detected_objects 裡有幾個 traffic light)
tl_count = len([obj for obj in detected_objects if obj.get("class_name","") == "traffic light"])
# print(f"[DEBUG] _generate_objects_summary 傳入的 detected_objects 中 traffic light: {tl_count} 個")
for obj in detected_objects:
if obj.get("class_name","") == "traffic light":
print(f" - conf={obj.get('confidence',0):.4f}, bbox={obj.get('bbox')}, region={obj.get('region')}")
if not detected_objects:
return "various elements"
# calculate object statistic
object_counts = {}
total_confidence = 0
for obj in detected_objects:
class_name = obj.get("class_name", "unknown")
confidence = obj.get("confidence", 0.5)
if class_name not in object_counts:
object_counts[class_name] = {"count": 0, "total_confidence": 0}
object_counts[class_name]["count"] += 1
object_counts[class_name]["total_confidence"] += confidence
total_confidence += confidence
# 計算平均置信度並排序
sorted_objects = []
for class_name, stats in object_counts.items():
avg_confidence = stats["total_confidence"] / stats["count"]
count = stats["count"]
# 重要性評分:結合數量和置信度
importance_score = (count * 0.6) + (avg_confidence * 0.4)
sorted_objects.append((class_name, count, importance_score))
# 按重要性排序,取前5個最重要的物件
sorted_objects.sort(key=lambda x: x[2], reverse=True)
top_objects = sorted_objects[:5]
# 生成自然語言描述
descriptions = []
for class_name, count, _ in top_objects:
clean_name = class_name.replace('_', ' ')
if count == 1:
article = "an" if clean_name[0].lower() in 'aeiou' else "a"
descriptions.append(f"{article} {clean_name}")
else:
descriptions.append(f"{count} {clean_name}s")
# 組合描述
if len(descriptions) == 1:
return descriptions[0]
elif len(descriptions) == 2:
return f"{descriptions[0]} and {descriptions[1]}"
else:
return ", ".join(descriptions[:-1]) + f", and {descriptions[-1]}"
except Exception as e:
self.logger.warning(f"Error generating objects summary: {str(e)}")
return "various elements"
def _get_placeholder_replacement(self, placeholder: str, fillers: Dict,
all_replacements: Dict, detected_objects: List[Dict],
scene_type: str) -> str:
"""
獲取特定佔位符的替換內容,確保永遠不返回空值
"""
try:
# 優先處理動態內容生成的佔位符
dynamic_placeholders = [
'primary_objects', 'detected_objects_summary', 'main_objects',
'functional_area', 'functional_zones_description', 'scene_elements'
]
if placeholder in dynamic_placeholders:
dynamic_content = self._generate_objects_summary(detected_objects)
if dynamic_content and dynamic_content.strip():
return dynamic_content.strip()
# 檢查預定義替換內容
if placeholder in all_replacements:
replacement = all_replacements[placeholder]
if replacement and replacement.strip():
return replacement.strip()
# 檢查物體模板填充器
if placeholder in fillers:
options = fillers[placeholder]
if options and isinstance(options, list):
valid_options = [opt.strip() for opt in options if opt and str(opt).strip()]
if valid_options:
num_items = min(len(valid_options), random.randint(1, 3))
selected_items = random.sample(valid_options, num_items)
if len(selected_items) == 1:
return selected_items[0]
elif len(selected_items) == 2:
return f"{selected_items[0]} and {selected_items[1]}"
else:
return ", ".join(selected_items[:-1]) + f", and {selected_items[-1]}"
# 基於檢測對象生成動態內容
scene_specific_replacement = self._generate_scene_specific_content(
placeholder, detected_objects, scene_type
)
if scene_specific_replacement and scene_specific_replacement.strip():
return scene_specific_replacement.strip()
# 通用備用字典 - 擴展版本
fallback_replacements = {
# 交通和城市相關
"crossing_pattern": "pedestrian crosswalks",
"pedestrian_behavior": "people moving carefully",
"traffic_pattern": "vehicle movement",
"urban_elements": "city infrastructure",
"street_elements": "urban features",
"intersection_features": "traffic management systems",
"pedestrian_density": "groups of people",
"pedestrian_flow": "pedestrian movement",
"traffic_description": "vehicle traffic",
"people_and_vehicles": "pedestrians and cars",
# 場景設置相關
"scene_setting": "this urban environment",
"location_context": "the area",
"spatial_context": "the scene",
"environmental_context": "this location",
# 常見的家具和設備
"furniture": "various furniture pieces",
"seating": "seating arrangements",
"electronics": "electronic devices",
"appliances": "household appliances",
# 活動和行為
"activities": "various activities",
"interactions": "people interacting",
"movement": "movement patterns",
# 照明和氛圍
"lighting_conditions": "ambient lighting",
"atmosphere": "the overall atmosphere",
"ambiance": "environmental ambiance",
# 空間描述
"spatial_arrangement": "spatial organization",
"layout": "the layout",
"composition": "visual composition",
# 物體和元素
"objects": "various objects",
"elements": "scene elements",
"features": "notable features",
"details": "observable details"
}
if placeholder in fallback_replacements:
return fallback_replacements[placeholder]
# 基於場景類型的智能默認值
scene_based_defaults = self._get_scene_based_default(placeholder, scene_type)
if scene_based_defaults:
return scene_based_defaults
# 最終備用:將下劃線轉換為有意義的短語
cleaned_placeholder = placeholder.replace('_', ' ')
# 對常見模式提供更好的默認值
if placeholder.endswith('_pattern'):
return f"{cleaned_placeholder.replace(' pattern', '')} arrangement"
elif placeholder.endswith('_behavior'):
return f"{cleaned_placeholder.replace(' behavior', '')} activity"
elif placeholder.endswith('_description'):
return f"{cleaned_placeholder.replace(' description', '')} elements"
elif placeholder.endswith('_elements'):
return cleaned_placeholder
elif placeholder.endswith('_features'):
return cleaned_placeholder
else:
return cleaned_placeholder if cleaned_placeholder != placeholder else "various elements"
except Exception as e:
self.logger.warning(f"Error getting replacement for placeholder '{placeholder}': {str(e)}")
# 確保即使在異常情況下也返回有意義的內容
return placeholder.replace('_', ' ') if placeholder else "scene elements"
def _get_scene_based_default(self, placeholder: str, scene_type: str) -> Optional[str]:
"""
基於場景類型提供智能默認值
Args:
placeholder: 佔位符名稱
scene_type: 場景類型
Returns:
Optional[str]: 場景特定的默認值或None
"""
try:
# 針對不同場景類型的特定默認值
scene_defaults = {
"urban_intersection": {
"crossing_pattern": "marked crosswalks",
"pedestrian_behavior": "pedestrians crossing carefully",
"traffic_pattern": "controlled traffic flow"
},
"city_street": {
"traffic_description": "urban vehicle traffic",
"street_elements": "city infrastructure",
"people_and_vehicles": "pedestrians and vehicles"
},
"living_room": {
"furniture": "comfortable living room furniture",
"seating": "sofas and chairs",
"electronics": "entertainment equipment"
},
"kitchen": {
"appliances": "kitchen appliances",
"cooking_equipment": "cooking tools and equipment"
},
"office_workspace": {
"office_equipment": "work furniture and devices",
"desk_setup": "desk and office chair"
}
}
if scene_type in scene_defaults and placeholder in scene_defaults[scene_type]:
return scene_defaults[scene_type][placeholder]
return None
except Exception as e:
self.logger.warning(f"Error getting scene-based default for '{placeholder}' in '{scene_type}': {str(e)}")
return None
def _generate_scene_specific_content(self, placeholder: str, detected_objects: List[Dict],
scene_type: str) -> Optional[str]:
"""
基於場景特定邏輯生成佔位符內容
Args:
placeholder: 佔位符名稱
detected_objects: 檢測到的物體列表
scene_type: 場景類型
Returns:
Optional[str]: 生成的內容或None
"""
try:
if placeholder == "furniture":
# 提取家具物品
furniture_ids = [56, 57, 58, 59, 60, 61] # 家具類別ID
furniture_objects = [obj for obj in detected_objects if obj.get("class_id") in furniture_ids]
if furniture_objects:
furniture_names = [obj.get("class_name", "furniture") for obj in furniture_objects[:3]]
unique_names = list(set(furniture_names))
return ", ".join(unique_names) if len(unique_names) > 1 else unique_names[0]
return "various furniture items"
elif placeholder == "electronics":
# 提取電子設備
electronics_ids = [62, 63, 64, 65, 66, 67, 68, 69, 70] # 電子設備類別ID
electronics_objects = [obj for obj in detected_objects if obj.get("class_id") in electronics_ids]
if electronics_objects:
electronics_names = [obj.get("class_name", "electronic device") for obj in electronics_objects[:3]]
unique_names = list(set(electronics_names))
return ", ".join(unique_names) if len(unique_names) > 1 else unique_names[0]
return "electronic devices"
elif placeholder == "people_count":
# 計算人數
people_count = len([obj for obj in detected_objects if obj.get("class_id") == 0])
if people_count == 0:
return "no people"
elif people_count == 1:
return "one person"
elif people_count < 5:
return f"{people_count} people"
else:
return "several people"
elif placeholder == "seating":
# 提取座位物品
seating_ids = [56, 57] # chair, sofa
seating_objects = [obj for obj in detected_objects if obj.get("class_id") in seating_ids]
if seating_objects:
seating_names = [obj.get("class_name", "seating") for obj in seating_objects[:2]]
unique_names = list(set(seating_names))
return ", ".join(unique_names) if len(unique_names) > 1 else unique_names[0]
return "seating arrangements"
# 如果沒有匹配的特定邏輯,返回None
return None
except Exception as e:
self.logger.warning(f"Error generating scene-specific content for '{placeholder}': {str(e)}")
return None
def get_confidence_template(self, confidence_level: str) -> str:
"""
獲取指定信心度級別的模板
Args:
confidence_level: 信心度級別 ('high', 'medium', 'low')
Returns:
str: 信心度模板字符串
"""
try:
confidence_templates = self.templates.get("confidence_templates", {})
if confidence_level in confidence_templates:
return confidence_templates[confidence_level]
# 備用模板
fallback_templates = {
"high": "{description} {details}",
"medium": "This appears to be {description} {details}",
"low": "This might be {description}, but the confidence is low. {details}"
}
return fallback_templates.get(confidence_level, "{description} {details}")
except Exception as e:
self.logger.warning(f"Error getting confidence template for '{confidence_level}': {str(e)}")
return "{description} {details}"
def get_lighting_template(self, lighting_type: str) -> str:
"""
獲取指定照明類型的模板
Args:
lighting_type: 照明類型
Returns:
str: 照明描述模板
"""
try:
lighting_templates = self.templates.get("lighting_templates", {})
if lighting_type in lighting_templates:
return lighting_templates[lighting_type]
# 備用模板
return f"The scene is captured with {lighting_type.replace('_', ' ')} lighting conditions."
except Exception as e:
self.logger.warning(f"Error getting lighting template for '{lighting_type}': {str(e)}")
return "The lighting conditions are not clearly identifiable."
def get_viewpoint_template(self, viewpoint: str) -> Dict[str, str]:
"""
獲取指定視角的模板
Args:
viewpoint: 視角類型
Returns:
Dict[str, str]: 包含prefix、observation等鍵的視角模板字典
"""
try:
viewpoint_templates = self.templates.get("viewpoint_templates", {})
if viewpoint in viewpoint_templates:
return viewpoint_templates[viewpoint]
# 備用模板
fallback_templates = {
"eye_level": {
"prefix": "From eye level, ",
"observation": "the scene is viewed straight ahead.",
"short_desc": "at eye level"
},
"aerial": {
"prefix": "From above, ",
"observation": "the scene is viewed from a bird's-eye perspective.",
"short_desc": "from above"
},
"low_angle": {
"prefix": "From a low angle, ",
"observation": "the scene is viewed from below looking upward.",
"short_desc": "from below"
},
"elevated": {
"prefix": "From an elevated position, ",
"observation": "the scene is viewed from a higher vantage point.",
"short_desc": "from an elevated position"
}
}
return fallback_templates.get(viewpoint, fallback_templates["eye_level"])
except Exception as e:
self.logger.warning(f"Error getting viewpoint template for '{viewpoint}': {str(e)}")
return {
"prefix": "",
"observation": "the scene is viewed normally.",
"short_desc": "normally"
}
def get_cultural_template(self, cultural_context: str) -> Dict[str, Any]:
"""
獲取指定文化語境的模板
Args:
cultural_context: 文化語境
Returns:
Dict[str, Any]: 文化模板字典
"""
try:
cultural_templates = self.templates.get("cultural_templates", {})
if cultural_context in cultural_templates:
return cultural_templates[cultural_context]
# 備用模板
return {
"elements": ["cultural elements"],
"description": f"The scene displays {cultural_context} cultural characteristics."
}
except Exception as e:
self.logger.warning(f"Error getting cultural template for '{cultural_context}': {str(e)}")
return {
"elements": ["various elements"],
"description": "The scene displays cultural characteristics."
}
def get_scene_detail_templates(self, scene_type: str, viewpoint: Optional[str] = None) -> List[str]:
"""
獲取場景詳細描述模板
Args:
scene_type: 場景類型
viewpoint: 可選的視角類型
Returns:
List[str]: 場景描述模板列表
"""
try:
scene_templates = self.templates.get("scene_detail_templates", {})
# 首先嘗試獲取特定視角的模板
if viewpoint:
viewpoint_key = f"{scene_type}_{viewpoint}"
if viewpoint_key in scene_templates:
return scene_templates[viewpoint_key]
# 然後嘗試獲取場景類型的通用模板
if scene_type in scene_templates:
return scene_templates[scene_type]
# 最後使用默認模板
if "default" in scene_templates:
return scene_templates["default"]
# 備用模板
return ["A scene with various elements and objects."]
except Exception as e:
self.logger.warning(f"Error getting scene detail templates for '{scene_type}': {str(e)}")
return ["A scene with various elements and objects."]
def reload_templates(self):
"""
重新載入所有模板
"""
try:
self.template_manager.reload_templates()
self.logger.info("Templates reloaded successfully")
except Exception as e:
self.logger.error(f"Error reloading templates: {str(e)}")
def get_template_categories(self) -> List[str]:
"""
獲取所有可用的模板類別名稱
Returns:
List[str]: 模板類別名稱列表
"""
return list(self.templates.keys())
def template_exists(self, category: str, key: Optional[str] = None) -> bool:
"""
檢查模板是否存在
Args:
category: 模板類別
key: 可選的模板鍵值
Returns:
bool: 模板是否存在
"""
try:
if category not in self.templates:
return False
if key is None:
return True
category_templates = self.templates[category]
if isinstance(category_templates, dict):
return key in category_templates
return False
except Exception as e:
self.logger.warning(f"Error checking template existence for {category}.{key}: {str(e)}")
return False
def apply_template(self, template: Union[str, Dict[str, Any]], scene_data: Dict[str, Any]) -> str:
"""
應用選定的模板來生成場景描述
Args:
template: 模板字符串或模板內容字典
scene_data: 場景分析的資料字典
Returns:
str: 最終生成的場景描述
"""
try:
# 如果傳入的是字符串模板,直接使用填充邏輯
if isinstance(template, str):
self.logger.debug("Processing string template directly")
# 提取場景數據
detected_objects = scene_data.get("detected_objects", [])
scene_type = scene_data.get("scene_type", "general")
places365_info = scene_data.get("places365_info")
object_statistics = scene_data.get("object_statistics")
functional_zones = scene_data.get("functional_zones", {})
# 暫存功能區域資訊供填充邏輯使用
self._current_functional_zones = functional_zones
# 使用現有的填充邏輯
filled_description = self.fill_template(
template,
detected_objects,
scene_type,
places365_info,
object_statistics
)
# 清理暫存資訊
if hasattr(self, '_current_functional_zones'):
delattr(self, '_current_functional_zones')
return filled_description
# 如果傳入的是字典結構模板
elif isinstance(template, dict):
self.logger.debug("Processing structured template")
return self._process_structured_template(template, scene_data)
# 如果是模板名稱字符串且需要從registry獲取
elif hasattr(self, 'template_registry') and template in self.template_registry:
template_dict = self.template_registry[template]
return self._process_structured_template(template_dict, scene_data)
else:
self.logger.warning(f"Invalid template format or template not found: {type(template)}")
return self._generate_fallback_scene_description(scene_data)
except Exception as e:
self.logger.error(f"Error applying template: {str(e)}")
return self._generate_fallback_scene_description(scene_data)
def _process_structured_template(self, template: Dict[str, Any], scene_data: Dict[str, Any]) -> str:
"""
處理結構化模板字典
Args:
template: 結構化模板字典
scene_data: 場景分析資料
Returns:
str: 生成的場景描述
"""
try:
# 提取 scene_data 中各區塊資料
zone_data = scene_data.get("functional_zones", scene_data.get("zones", {}))
object_data = scene_data.get("detected_objects", [])
scene_context = scene_data.get("scene_context", "")
# 獲取模板結構
structure = template.get("structure", [])
if not structure:
self.logger.warning("Template has no structure defined")
return self._generate_fallback_scene_description(scene_data)
description_parts = []
# 按照模板結構生成描述
for section in structure:
section_type = section.get("type", "")
content = section.get("content", "")
if section_type == "opening":
description_parts.append(content)
elif section_type == "zone_analysis":
zone_descriptions = self._generate_zone_descriptions(zone_data, section)
if zone_descriptions:
description_parts.extend(zone_descriptions)
elif section_type == "object_summary":
object_summary = self._generate_object_summary(object_data, section)
if object_summary:
description_parts.append(object_summary)
elif section_type == "conclusion":
conclusion = self._generate_conclusion(template, zone_data, object_data)
if conclusion:
description_parts.append(conclusion)
# 合併並標準化輸出
final_description = self._standardize_final_description(" ".join(description_parts))
self.logger.info("Successfully applied structured template")
return final_description
except Exception as e:
self.logger.error(f"Error processing structured template: {str(e)}")
return self._generate_fallback_scene_description(scene_data)
def _generate_fallback_scene_description(self, scene_data: Dict[str, Any]) -> str:
"""
生成備用場景描述
Args:
scene_data: 場景分析資料
Returns:
str: 備用場景描述
"""
try:
detected_objects = scene_data.get("detected_objects", [])
zones = scene_data.get("functional_zones", scene_data.get("zones", {}))
scene_type = scene_data.get("scene_type", "general")
object_count = len(detected_objects)
zone_count = len(zones)
if zone_count > 0 and object_count > 0:
return f"Scene analysis completed with {zone_count} functional areas containing {object_count} identified objects."
elif object_count > 0:
return f"Scene analysis identified {object_count} objects in this {scene_type.replace('_', ' ')} environment."
else:
return f"Scene analysis completed for this {scene_type.replace('_', ' ')} environment."
except Exception as e:
self.logger.warning(f"Error generating fallback description: {str(e)}")
return "Scene analysis completed with detected objects and functional areas."
def _generate_zone_descriptions(self, zone_data: Dict[str, Any], section: Dict[str, Any]) -> List[str]:
"""
生成功能區域描述
"""
try:
descriptions = []
if not zone_data:
return descriptions
# 直接處理區域資料(zone_data 本身就是區域字典)
sorted_zones = sorted(zone_data.items(),
key=lambda x: len(x[1].get("objects", [])),
reverse=True)
for zone_name, zone_info in sorted_zones:
description = zone_info.get("description", "")
objects = zone_info.get("objects", [])
if objects:
# 使用現有描述或生成基於物件的描述
if description and not any(tech in description.lower() for tech in ['zone', 'area', 'region']):
zone_desc = description
else:
# 生成更自然的區域描述
clean_zone_name = zone_name.replace('_', ' ').replace(' area', '').replace(' zone', '')
object_list = ', '.join(objects[:3])
if 'crossing' in zone_name or 'pedestrian' in zone_name:
zone_desc = f"In the central crossing area, there are {object_list}."
elif 'vehicle' in zone_name or 'traffic' in zone_name:
zone_desc = f"The vehicle movement area includes {object_list}."
elif 'control' in zone_name:
zone_desc = f"Traffic control elements include {object_list}."
else:
zone_desc = f"The {clean_zone_name} contains {object_list}."
if len(objects) > 3:
zone_desc += f" Along with {len(objects) - 3} additional elements."
descriptions.append(zone_desc)
return descriptions
except Exception as e:
logger.error(f"Error generating zone descriptions: {str(e)}")
return []
def _generate_object_summary(self, object_data: List[Dict], section: Dict[str, Any]) -> str:
"""
生成物件摘要描述
"""
try:
if not object_data:
return ""
# 統計物件類型並計算重要性
object_stats = {}
for obj in object_data:
class_name = obj.get("class_name", "unknown")
confidence = obj.get("confidence", 0.5)
if class_name not in object_stats:
object_stats[class_name] = {"count": 0, "total_confidence": 0}
object_stats[class_name]["count"] += 1
object_stats[class_name]["total_confidence"] += confidence
# 按重要性排序(結合數量和置信度)
sorted_objects = []
for class_name, stats in object_stats.items():
count = stats["count"]
avg_confidence = stats["total_confidence"] / count
importance = count * 0.6 + avg_confidence * 0.4
sorted_objects.append((class_name, count, importance))
sorted_objects.sort(key=lambda x: x[2], reverse=True)
# 生成自然語言描述
descriptions = []
for class_name, count, _ in sorted_objects[:5]:
clean_name = class_name.replace('_', ' ')
if count == 1:
article = "an" if clean_name[0].lower() in 'aeiou' else "a"
descriptions.append(f"{article} {clean_name}")
else:
descriptions.append(f"{count} {clean_name}s")
if len(descriptions) == 1:
return f"The scene features {descriptions[0]}."
elif len(descriptions) == 2:
return f"The scene features {descriptions[0]} and {descriptions[1]}."
else:
main_items = ", ".join(descriptions[:-1])
return f"The scene features {main_items}, and {descriptions[-1]}."
except Exception as e:
self.logger.error(f"Error generating object summary: {str(e)}")
return ""
def _generate_conclusion(self, template: Dict[str, Any], zone_data: Dict[str, Any],
object_data: List[Dict]) -> str:
"""
生成結論描述
"""
try:
scene_type = template.get("scene_type", "general")
zones_count = len(zone_data)
objects_count = len(object_data)
if scene_type == "indoor":
conclusion = f"This indoor environment demonstrates clear functional organization with {zones_count} distinct areas and {objects_count} identified objects."
elif scene_type == "outdoor":
conclusion = f"This outdoor scene shows dynamic activity patterns across {zones_count} functional zones with {objects_count} detected elements."
else:
conclusion = f"The scene analysis reveals {zones_count} functional areas containing {objects_count} identifiable objects."
return conclusion
except Exception as e:
logger.error(f"Error generating conclusion: {str(e)}")
return ""
def _standardize_final_description(self, description: str) -> str:
"""
對最終描述進行標準化處理
Args:
description: 原始描述文本
Returns:
str: 標準化後的描述文本
"""
try:
# 移除多餘空格
description = " ".join(description.split())
# 確保句子間有適當間距
description = description.replace(". ", ". ")
# 移除任何殘留的技術性標識符
technical_patterns = [
r'zone_\d+', r'area_\d+', r'region_\d+',
r'_zone', r'_area', r'_region'
]
for pattern in technical_patterns:
description = re.sub(pattern, '', description, flags=re.IGNORECASE)
return description.strip()
except Exception as e:
logger.error(f"Error standardizing final description: {str(e)}")
return description
|