File size: 71,084 Bytes
e6a18b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729

import logging
import traceback
import numpy as np
from typing import Dict, List, Any, Optional

logger = logging.getLogger(__name__)

class SceneZoneIdentifier:
    """
    負責不同場景類型的區域識別邏輯
    專注於根據場景類型執行相應的功能區域識別策略
    """

    def __init__(self):
        """初始化場景區域辨識器"""
        try:
            logger.info("SceneZoneIdentifier initialized successfully")

        except Exception as e:
            logger.error(f"Failed to initialize SceneZoneIdentifier: {str(e)}")
            logger.error(traceback.format_exc())
            raise

    def identify_indoor_zones(self, category_regions: Dict, detected_objects: List[Dict], scene_type: str) -> Dict:
        """
        平衡化的室內功能區域識別並標準化命名
        採用通用的物件關聯性分析,避免只針對特定場景

        Args:
            category_regions: 按類別和區域分組的物件字典
            detected_objects: 檢測到的物件列表
            scene_type: 場景類型

        Returns:
            識別出的室內功能區域字典,使用描述性鍵名
        """
        try:
            zones = {}

            # 主要功能區域(基於物件關聯性而非場景類型)
            primary_zone = self._identify_primary_functional_area(detected_objects)
            if primary_zone:
                # 基於區域內容生成描述性鍵名
                descriptive_key = self._generate_descriptive_zone_key_from_data(primary_zone, "primary")
                zones[descriptive_key] = primary_zone

            # 只有明確證據且物件數量足夠時創建次要功能區域
            if len(zones) >= 1 and len(detected_objects) >= 6:
                secondary_zone = self._identify_secondary_functional_area(detected_objects, zones)
                if secondary_zone:
                    # 基於區域內容生成描述性鍵名
                    descriptive_key = self._generate_descriptive_zone_key_from_data(secondary_zone, "secondary")
                    zones[descriptive_key] = secondary_zone

            logger.info(f"Identified {len(zones)} indoor zones for scene type '{scene_type}'")
            return zones

        except Exception as e:
            logger.error(f"Error identifying indoor zones: {str(e)}")
            logger.error(traceback.format_exc())
            return {}

    def _generate_descriptive_zone_key_from_data(self, zone_data: Dict, priority_level: str) -> str:
        """
        基於區域數據生成描述性鍵名

        Args:
            zone_data: 區域數據字典
            priority_level: 優先級別(primary/secondary)

        Returns:
            str: 描述性區域鍵名
        """
        try:
            objects = zone_data.get("objects", [])
            region = zone_data.get("region", "")
            description = zone_data.get("description", "")

            # 基於物件內容確定功能類型
            if any("dining" in obj.lower() or "table" in obj.lower() for obj in objects):
                base_name = "dining area"
            elif any("chair" in obj.lower() or "sofa" in obj.lower() for obj in objects):
                base_name = "seating area"
            elif any("bed" in obj.lower() for obj in objects):
                base_name = "sleeping area"
            elif any("laptop" in obj.lower() or "keyboard" in obj.lower() for obj in objects):
                base_name = "workspace area"
            elif any("plant" in obj.lower() or "vase" in obj.lower() for obj in objects):
                base_name = "decorative area"
            elif any("refrigerator" in obj.lower() or "microwave" in obj.lower() for obj in objects):
                base_name = "kitchen area"
            else:
                # 基於描述內容推斷
                if "dining" in description.lower():
                    base_name = "dining area"
                elif "seating" in description.lower() or "relaxation" in description.lower():
                    base_name = "seating area"
                elif "work" in description.lower():
                    base_name = "workspace area"
                elif "decorative" in description.lower():
                    base_name = "decorative area"
                else:
                    base_name = "functional area"

            # 為次要區域添加位置標識以區分
            if priority_level == "secondary" and region:
                spatial_context = self._get_spatial_context_description(region)
                if spatial_context:
                    return f"{spatial_context} {base_name}"

            return base_name

        except Exception as e:
            logger.warning(f"Error generating descriptive zone key: {str(e)}")
            return "activity area"

    def _get_spatial_context_description(self, region: str) -> str:
        """
        獲取空間上下文描述

        Args:
            region: 區域位置標識

        Returns:
            str: 空間上下文描述
        """
        try:
            spatial_mapping = {
                "top_left": "upper left",
                "top_center": "upper",
                "top_right": "upper right",
                "middle_left": "left side",
                "middle_center": "central",
                "middle_right": "right side",
                "bottom_left": "lower left",
                "bottom_center": "lower",
                "bottom_right": "lower right"
            }

            return spatial_mapping.get(region, "")

        except Exception as e:
            logger.warning(f"Error getting spatial context for region '{region}': {str(e)}")
            return ""

    def identify_outdoor_general_zones(self, category_regions: Dict, detected_objects: List[Dict], scene_type: str) -> Dict:
        """
        識別一般戶外場景的功能區域

        Args:
            category_regions: 按類別和區域分組的物件字典
            detected_objects: 檢測到的物件列表
            scene_type: 特定戶外場景類型

        Returns:
            戶外功能區域字典
        """
        try:
            zones = {}

            # 識別行人區域
            people_objs = [obj for obj in detected_objects if obj["class_id"] == 0]
            if people_objs:
                people_regions = {}
                for obj in people_objs:
                    region = obj["region"]
                    if region not in people_regions:
                        people_regions[region] = []
                    people_regions[region].append(obj)

                if people_regions:
                    # 找到主要的行人活動區域
                    main_people_regions = sorted(people_regions.items(),
                                            key=lambda x: len(x[1]),
                                            reverse=True)[:2]  # 取前2個區域

                    for idx, (region, objs) in enumerate(main_people_regions):
                        if len(objs) > 0:
                            # 生成基於位置的描述性鍵名
                            spatial_desc = self._get_directional_description(region)
                            if spatial_desc and spatial_desc != "central":
                                zone_key = f"{spatial_desc} pedestrian area"
                            else:
                                zone_key = "main pedestrian area" if idx == 0 else "secondary pedestrian area"

                            zones[zone_key] = {
                                "region": region,
                                "objects": ["person"] * len(objs),
                                "description": f"Pedestrian area with {len(objs)} {'people' if len(objs) > 1 else 'person'}"
                            }

            # 識別車輛區域,適用於街道和停車場
            vehicle_objs = [obj for obj in detected_objects if obj["class_id"] in [1, 2, 3, 5, 6, 7]]
            if vehicle_objs:
                vehicle_regions = {}
                for obj in vehicle_objs:
                    region = obj["region"]
                    if region not in vehicle_regions:
                        vehicle_regions[region] = []
                    vehicle_regions[region].append(obj)

                if vehicle_regions:
                    main_vehicle_region = max(vehicle_regions.items(),
                                        key=lambda x: len(x[1]),
                                        default=(None, []))

                    if main_vehicle_region[0] is not None:
                        vehicle_types = [obj["class_name"] for obj in main_vehicle_region[1]]
                        zones["vehicle_zone"] = {
                            "region": main_vehicle_region[0],
                            "objects": vehicle_types,
                            "description": f"Traffic area with {', '.join(list(set(vehicle_types))[:3])}"
                        }

            # 針對公園區域的特殊處理
            if scene_type == "park_area":
                zones.update(self._identify_park_recreational_zones(detected_objects))

            # 針對停車場的特殊處理
            if scene_type == "parking_lot":
                zones.update(self._identify_parking_zones(detected_objects))

            logger.info(f"Identified {len(zones)} outdoor zones for scene type '{scene_type}'")
            return zones

        except Exception as e:
            logger.error(f"Error identifying outdoor general zones: {str(e)}")
            logger.error(traceback.format_exc())
            return {}

    def identify_intersection_zones(self, category_regions: Dict, detected_objects: List[Dict], viewpoint: str) -> Dict:
        """
        辨識城市十字路口的功能區域,無論是否有行人,只要偵測到紅綠燈就一定顯示 Traffic Control Area;
        若有行人,則額外建立 Crossing Zone 並把行人 + 同 region 的紅綠燈歸在一起。

        Args:
            category_regions: 按類別和 region 分組的物件字典
            detected_objects: YOLO 檢測到的所有物件列表
            viewpoint: 偵測到的視角字串

        Returns:
            zones: 最終的十字路口功能區域字典
        """
        try:
            zones = {}

            # 1. 按 class_id 分出行人、車輛、紅綠燈
            pedestrian_objs    = [obj for obj in detected_objects if obj["class_id"] == 0]
            vehicle_objs       = [obj for obj in detected_objects if obj["class_id"] in [1, 2, 3, 5, 7]]
            traffic_light_objs = [obj for obj in detected_objects if obj["class_id"] == 9]

            # 2. Step A: 無條件建立 Traffic Control Area
            #    把每個 region 下的紅綠燈都先分群,生成對應 zone,確保「只要偵測到紅綠燈就一定顯示」
            signal_regions_all = {}
            for t in traffic_light_objs:
                region = t["region"]
                signal_regions_all.setdefault(region, []).append(t)

            for idx, (region, signals) in enumerate(signal_regions_all.items()):
                # 先決定 zone_key (依 direction 或 primary/auxiliary)
                direction = self._get_directional_description(region)
                if direction and direction != "central":
                    zone_key = f"{direction} traffic control area"
                else:
                    zone_key = "primary traffic control area" if idx == 0 else "auxiliary traffic control area"

                # 確保命名不衝突
                if zone_key in zones:
                    suffix = 1
                    new_key = f"{zone_key} ({suffix})"
                    while new_key in zones:
                        suffix += 1
                        new_key = f"{zone_key} ({suffix})"
                    zone_key = new_key

                zones[zone_key] = {
                    "region": region,
                    "objects": ["traffic light"] * len(signals),
                    "description": f"Traffic control area with {len(signals)} traffic lights in {region}"
                }

            # (用於後面計算 Crossing 使用掉的 traffic light)
            used_tl_count_per_region = dict.fromkeys(signal_regions_all.keys(), 0)

            # 3. Step B: 如果有行人,就建立 Crossing Zone,並移除已被打包的紅綠燈
            if pedestrian_objs:
                # 先呼叫 _analyze_crossing_patterns,讓它回傳「行人 + 同 region 的紅綠燈」區
                crossing_zones = self._analyze_crossing_patterns(pedestrian_objs, traffic_light_objs)

                # 把 Crossing Zone 加到最終 zones,並同時記錄已使用掉的紅綠燈數量
                for zone_key, zone_info in crossing_zones.items():
                    region = zone_info.get("region", "")
                    obj_list = zone_info.get("objects", [])

                    # 如果該 zone_info["objects"] 裡含有紅綠燈,就累加到 used_tl_count_per_region
                    count_in_zone = obj_list.count("traffic light")
                    if count_in_zone > 0:
                        used_tl_count_per_region[region] = used_tl_count_per_region.get(region, 0) + count_in_zone

                    # 加入最終結果
                    # 如果 key 重複,也可以在此加上 index,或直接覆蓋
                    if zone_key in zones:
                        suffix = 1
                        new_key = f"{zone_key} ({suffix})"
                        while new_key in zones:
                            suffix += 1
                            new_key = f"{zone_key} ({suffix})"
                        zone_key = new_key

                    zones[zone_key] = {
                        "region": region,
                        "objects": obj_list,
                        "description": zone_info.get("description", "")
                    }

            # 4. Step C: 計算並顯示 debug 資訊 (Total / Used / Remaining)
            for region, signals in signal_regions_all.items():
                total = len(signals)
                used = used_tl_count_per_region.get(region, 0)
                remaining = total - used
                # print(f"[DEBUG] Region '{region}': Total TL = {total}, Used in crossing = {used}, Remaining = {remaining}")

            # 5. Step D: 分析車輛交通區域(Vehicle Zones)
            if vehicle_objs:
                traffic_zones = self._analyze_traffic_zones(vehicle_objs)
                # _analyze_traffic_zones 內部已用英文 debug,直接更新
                for zone_key, zone_info in traffic_zones.items():
                    if zone_key in zones:
                        suffix = 1
                        new_key = f"{zone_key} ({suffix})"
                        while new_key in zones:
                            suffix += 1
                            new_key = f"{zone_key} ({suffix})"
                        zone_key = new_key
                    zones[zone_key] = zone_info

            logger.info(f"Identified {len(zones)} intersection zones")
            return zones

        except Exception as e:
            logger.error(f"Error in identify_intersection_zones: {str(e)}")
            logger.error(traceback.format_exc())
            return {}

    def identify_aerial_view_zones(self, category_regions: Dict, detected_objects: List[Dict], scene_type: str) -> Dict:
        """
        辨識空中視角場景的功能區域
        專注於模式和流動而非特定區域

        Args:
            category_regions: 按類別和區域分組的物件字典
            detected_objects: 檢測到的物件列表
            scene_type: 特定場景類型

        Returns:
            空中視角功能區域字典
        """
        try:
            zones = {}

            # 識別行人模式
            people_objs = [obj for obj in detected_objects if obj["class_id"] == 0]
            if people_objs:
                # 將位置轉換為數組進行模式分析
                positions = np.array([obj["normalized_center"] for obj in people_objs])

                if len(positions) >= 3:
                    # 計算分布指標
                    x_coords = positions[:, 0]
                    y_coords = positions[:, 1]

                    x_mean = np.mean(x_coords)
                    y_mean = np.mean(y_coords)
                    x_std = np.std(x_coords)
                    y_std = np.std(y_coords)

                    # 判斷人群是否組織成線性模式
                    if x_std < 0.1 or y_std < 0.1:
                        # 沿一個軸的線性分布
                        pattern_direction = "vertical" if x_std < y_std else "horizontal"

                        zones["pedestrian_pattern"] = {
                            "region": "central",
                            "objects": ["person"] * len(people_objs),
                            "description": f"Aerial view shows a {pattern_direction} pedestrian movement pattern"
                        }
                    else:
                        # 更分散的模式
                        zones["pedestrian_distribution"] = {
                            "region": "wide",
                            "objects": ["person"] * len(people_objs),
                            "description": f"Aerial view shows pedestrians distributed across the area"
                        }

            # 識別車輛模式進行交通分析
            vehicle_objs = [obj for obj in detected_objects if obj["class_id"] in [1, 2, 3, 5, 6, 7]]
            if vehicle_objs:
                zones.update(self._analyze_aerial_traffic_patterns(vehicle_objs))

            # 針對十字路口特定空中視角的處理
            if "intersection" in scene_type:
                zones.update(self._identify_aerial_intersection_features(detected_objects))

            # 針對廣場空中視角的處理
            if "plaza" in scene_type:
                zones.update(self._identify_aerial_plaza_features(people_objs))

            logger.info(f"Identified {len(zones)} aerial view zones")
            return zones

        except Exception as e:
            logger.error(f"Error identifying aerial view zones: {str(e)}")
            logger.error(traceback.format_exc())
            return {}

    def identify_asian_cultural_zones(self, category_regions: Dict, detected_objects: List[Dict], scene_type: str) -> Dict:
        """
        辨識有亞洲文化背景的場景功能區域

        Args:
            category_regions: 按類別和區域分組的物件字典
            detected_objects: 檢測到的物件列表
            scene_type: 特定場景類型

        Returns:
            亞洲文化功能區域字典
        """
        try:
            zones = {}

            # 識別店面區域
            # 由於店面不能直接檢測,從情境推斷
            # 例如,尋找有標誌、行人和小物件的區域
            storefront_regions = {}
            for obj in detected_objects:
                if obj["class_id"] == 0:  # Person
                    region = obj["region"]
                    if region not in storefront_regions:
                        storefront_regions[region] = []
                    storefront_regions[region].append(obj)

            # 將人最多的區域作為店面區域
            if storefront_regions:
                main_storefront_regions = sorted(storefront_regions.items(),
                                            key=lambda x: len(x[1]),
                                            reverse=True)[:2]  # 前2個區域

                for idx, (region, objs) in enumerate(main_storefront_regions):
                    # 生成基於位置的描述性鍵名
                    spatial_desc = self._get_directional_description(region)
                    if spatial_desc and spatial_desc != "central":
                        zone_key = f"{spatial_desc} commercial area"
                    else:
                        zone_key = "main commercial area" if idx == 0 else "secondary commercial area"

                    zones[zone_key] = {
                        "region": region,
                        "objects": [obj["class_name"] for obj in objs],
                        "description": f"Asian commercial storefront with pedestrian activity"
                    }

            # 辨識行人通道 
            zones.update(self._identify_asian_pedestrian_pathway(detected_objects))

            # 辨識攤販區域(小攤/商店 - 從情境推斷)
            zones.update(self._identify_vendor_zones(detected_objects))

            # 針對夜市的特殊處理
            if scene_type == "asian_night_market":
                zones["food_stall_zone"] = {
                    "region": "middle_center",
                    "objects": ["inferred food stalls"],
                    "description": "Food stall area typical of Asian night markets"
                }

            logger.info(f"Identified {len(zones)} Asian cultural zones")
            return zones

        except Exception as e:
            logger.error(f"Error identifying Asian cultural zones: {str(e)}")
            logger.error(traceback.format_exc())
            return {}

    def identify_upscale_dining_zones(self, category_regions: Dict, detected_objects: List[Dict]) -> Dict:
        """
        辨識高級餐飲設置的功能區域

        Args:
            category_regions: 按類別和區域分組的物件字典
            detected_objects: 檢測到的物件列表

        Returns:
            高級餐飲功能區域字典
        """
        try:
            zones = {}

            # 辨識餐桌區域
            dining_items = []
            dining_regions = {}

            for obj in detected_objects:
                if obj["class_id"] in [40, 41, 42, 43, 44, 45, 60]:  # Wine glass, cup, fork, knife, spoon, bowl, table
                    region = obj["region"]
                    if region not in dining_regions:
                        dining_regions[region] = []
                    dining_regions[region].append(obj)
                    dining_items.append(obj["class_name"])

            if dining_items:
                main_dining_region = max(dining_regions.items(),
                                    key=lambda x: len(x[1]),
                                    default=(None, []))

                if main_dining_region[0] is not None:
                    zones["formal_dining_zone"] = {
                        "region": main_dining_region[0],
                        "objects": list(set(dining_items)),
                        "description": f"Formal dining area with {', '.join(list(set(dining_items))[:3])}"
                    }

            # 識別裝飾區域,增強檢測
            zones.update(self._identify_upscale_decorative_zones(detected_objects))

            # 識別座位安排區域
            zones.update(self._identify_dining_seating_zones(detected_objects))

            # 識別服務區域(如果與餐飲區域不同)
            zones.update(self._identify_serving_zones(detected_objects, zones))

            logger.info(f"Identified {len(zones)} upscale dining zones")
            return zones

        except Exception as e:
            logger.error(f"Error identifying upscale dining zones: {str(e)}")
            logger.error(traceback.format_exc())
            return {}

    def identify_financial_district_zones(self, category_regions: Dict, detected_objects: List[Dict]) -> Dict:
        """
        金融區場景的功能區域

        Args:
            category_regions: 按類別和區域分組的物件字典
            detected_objects: 檢測到的物件列表

        Returns:
            金融區功能區域字典
        """
        try:
            zones = {}

            # 識別交通區域
            traffic_items = []
            traffic_regions = {}

            for obj in detected_objects:
                if obj["class_id"] in [1, 2, 3, 5, 6, 7, 9]:  # 各種車輛和交通燈
                    region = obj["region"]
                    if region not in traffic_regions:
                        traffic_regions[region] = []
                    traffic_regions[region].append(obj)
                    traffic_items.append(obj["class_name"])

            if traffic_items:
                main_traffic_region = max(traffic_regions.items(),
                                    key=lambda x: len(x[1]),
                                    default=(None, []))

                if main_traffic_region[0] is not None:
                    zones["traffic_zone"] = {
                        "region": main_traffic_region[0],
                        "objects": list(set(traffic_items)),
                        "description": f"Urban traffic area with {', '.join(list(set(traffic_items))[:3])}"
                    }

            # 側邊建築區域(從場景情境推斷)
            zones.update(self._identify_building_zones(detected_objects))

            # 行人區域
            zones.update(self._identify_financial_pedestrian_zones(detected_objects))

            logger.info(f"Identified {len(zones)} financial district zones")
            return zones

        except Exception as e:
            logger.error(f"Error identifying financial district zones: {str(e)}")
            logger.error(traceback.format_exc())
            return {}

    def identify_landmark_zones(self, landmark_objects: List[Dict]) -> Dict:
        """
        辨識與地標相關的功能區域

        Args:
            landmark_objects: 被辨識為地標的物體列表

        Returns:
            地標相關的功能區域字典
        """
        try:
            landmark_zones = {}

            # 如果沒有任何地標,就直接回空字典
            if not landmark_objects:
                logger.warning("No landmark objects provided to identify_landmark_zones")
                return landmark_zones

            # 只取第一個地標來示範:至少產生一個地標
            landmark = landmark_objects[0]
            # 確保傳入的 landmark 是 dict
            if not isinstance(landmark, dict):
                logger.warning("First landmark object is not a dict")
                return landmark_zones

            # 從 landmark dict 拿出必要欄位
            landmark_id = landmark.get("landmark_id", "unknown_landmark")
            landmark_name = landmark.get("class_name", "Landmark")
            landmark_type = landmark.get("landmark_type", "architectural")
            landmark_region = landmark.get("region", "middle_center")

            # 如果 location 沒提供,就給預設 "this area"
            location = landmark.get("location")
            if not location:
                location = "this area"

            # 為地標創建主要觀景區
            zone_id = f"{landmark_name.lower().replace(' ', '_')}_viewing_area"
            zone_name = f"{landmark_name} Viewing Area"

            # 根據地標類型調整描述,並確保帶入地點
            if landmark_type == "natural":
                zone_description = (
                    f"Scenic viewpoint for observing {landmark_name}, "
                    f"a notable natural landmark in {location}."
                )
                primary_function = "Nature observation and photography"
            elif landmark_type == "monument":
                zone_description = (
                    f"Viewing area around {landmark_name}, "
                    f"a significant monument in {location}."
                )
                primary_function = "Historical appreciation and cultural tourism"
            else:  # architectural
                zone_description = (
                    f"Area centered around {landmark_name}, "
                    f"where visitors can observe and appreciate this iconic structure in {location}."
                )
                primary_function = "Architectural tourism and photography"

            # 確定與地標相關的物體(如果被偵測到)
            related_objects = []
            for o in landmark_objects:
                cn = o.get("class_name", "").lower()
                if cn in ["person", "camera", "cell phone", "backpack"]:
                    related_objects.append(cn)

            # 建立地標功能區
            landmark_zones[zone_id] = {
                "name": zone_name,
                "description": zone_description,
                "objects": ["landmark"] + related_objects,
                "region": landmark_region,
                "primary_function": primary_function
            }

            # 創建相關輔助功能區,如攝影區、紀念品販賣區
            auxiliary_zones = self._create_landmark_auxiliary_zones(landmark, 0)
            if auxiliary_zones:
                landmark_zones.update(auxiliary_zones)

            logger.info(f"Identified {len(landmark_zones)} landmark zones")
            return landmark_zones

        except Exception as e:
            logger.error(f"Error in identify_landmark_zones: {str(e)}")
            logger.error(traceback.format_exc())
            return {}


    def _identify_primary_functional_area(self, detected_objects: List[Dict]) -> Dict:
        """
        識別主要功能區域,基於最強的物件關聯性組合
        採用通用邏輯處理各種室內場景

        Args:
            detected_objects: 檢測到的物件列表

        Returns:
            主要功能區域字典或None
        """
        try:
            # 用餐區域檢測(桌椅組合)
            dining_area = self._detect_functional_combination(
                detected_objects,
                primary_objects=[60],  # dining table
                supporting_objects=[56, 40, 41, 42, 43],  # chair, wine glass, cup, fork, knife
                min_supporting=2,
                description_template="Dining area with table and seating arrangement"
            )
            if dining_area:
                return dining_area

            # 休息區域檢測(沙發電視組合或床)
            seating_area = self._detect_functional_combination(
                detected_objects,
                primary_objects=[57, 59],  # sofa, bed
                supporting_objects=[62, 58, 56],  # tv, potted plant, chair
                min_supporting=1,
                description_template="Seating and relaxation area"
            )
            if seating_area:
                return seating_area

            # 工作區域檢測(電子設備與家具組合)
            work_area = self._detect_functional_combination(
                detected_objects,
                primary_objects=[63, 66],  # laptop, keyboard
                supporting_objects=[60, 56, 64],  # dining table, chair, mouse
                min_supporting=2,
                description_template="Workspace area with electronics and furniture"
            )
            if work_area:
                return work_area

            return None

        except Exception as e:
            logger.error(f"Error identifying primary functional area: {str(e)}")
            logger.error(traceback.format_exc())
            return None

    def _identify_secondary_functional_area(self, detected_objects: List[Dict], existing_zones: Dict) -> Dict:
        """
        識別次要功能區域,避免與主要區域重疊

        Args:
            detected_objects: 檢測到的物件列表
            existing_zones: 已存在的功能區域

        Returns:
            次要功能區域字典或None
        """
        try:
            # 獲取已使用的區域
            used_regions = set(zone.get("region") for zone in existing_zones.values())

            # 裝飾區域檢測(植物集中區域)
            decorative_area = self._detect_functional_combination(
                detected_objects,
                primary_objects=[58],  # potted plant
                supporting_objects=[75],  # vase
                min_supporting=0,
                min_primary=3,  # 至少需要3個植物
                description_template="Decorative area with plants and ornamental items",
                exclude_regions=used_regions
            )
            if decorative_area:
                return decorative_area

            # 儲存區域檢測(廚房電器組合)
            storage_area = self._detect_functional_combination(
                detected_objects,
                primary_objects=[72, 68, 69],  # refrigerator, microwave, oven
                supporting_objects=[71],  # sink
                min_supporting=0,
                min_primary=2,
                description_template="Kitchen appliance and storage area",
                exclude_regions=used_regions
            )
            if storage_area:
                return storage_area

            return None

        except Exception as e:
            logger.error(f"Error identifying secondary functional area: {str(e)}")
            logger.error(traceback.format_exc())
            return None

    def _detect_functional_combination(self, detected_objects: List[Dict], primary_objects: List[int],
                                    supporting_objects: List[int], min_supporting: int,
                                    description_template: str, min_primary: int = 1,
                                    exclude_regions: set = None) -> Dict:
        """
        通用的功能組合檢測方法
        基於主要物件和支持物件的組合判斷功能區域

        Args:
            detected_objects: 檢測到的物件列表
            primary_objects: 主要物件的class_id列表
            supporting_objects: 支持物件的class_id列表
            min_supporting: 最少需要的支持物件數量
            description_template: 描述模板
            min_primary: 最少需要的主要物件數量
            exclude_regions: 需要排除的區域集合

        Returns:
            功能區域資訊字典,如果不符合條件則返回None
        """
        try:
            if exclude_regions is None:
                exclude_regions = set()

            # 收集主要物件
            primary_objs = [obj for obj in detected_objects
                        if obj.get("class_id") in primary_objects and obj.get("confidence", 0) >= 0.4]

            # 收集支持物件
            supporting_objs = [obj for obj in detected_objects
                            if obj.get("class_id") in supporting_objects and obj.get("confidence", 0) >= 0.4]

            # 檢查是否滿足最少數量要求
            if len(primary_objs) < min_primary or len(supporting_objs) < min_supporting:
                return None

            # 按區域組織物件
            region_combinations = {}
            all_relevant_objs = primary_objs + supporting_objs

            for obj in all_relevant_objs:
                region = obj.get("region")

                # 排除指定區域
                if region in exclude_regions:
                    continue

                if region not in region_combinations:
                    region_combinations[region] = {"primary": [], "supporting": [], "all": []}

                region_combinations[region]["all"].append(obj)

                if obj.get("class_id") in primary_objects:
                    region_combinations[region]["primary"].append(obj)
                else:
                    region_combinations[region]["supporting"].append(obj)

            # 找到最佳區域組合
            best_region = None
            best_score = 0

            for region, objs in region_combinations.items():
                # 計算該區域的評分
                primary_count = len(objs["primary"])
                supporting_count = len(objs["supporting"])

                # 必須滿足最低要求
                if primary_count < min_primary or supporting_count < min_supporting:
                    continue

                # 計算組合評分(主要物件權重較高)
                score = primary_count * 2 + supporting_count

                if score > best_score:
                    best_score = score
                    best_region = region

            if best_region is None:
                return None

            best_combination = region_combinations[best_region]
            all_objects = [obj["class_name"] for obj in best_combination["all"]]

            return {
                "region": best_region,
                "objects": all_objects,
                "description": description_template
            }

        except Exception as e:
            logger.error(f"Error detecting functional combination: {str(e)}")
            logger.error(traceback.format_exc())
            return None

    def _analyze_crossing_patterns(self, pedestrians: List[Dict], traffic_lights: List[Dict]) -> Dict:
        """
        Analyze pedestrian crossing patterns to identify crossing zones.
        若同一 region 中同時有行人與紅綠燈,則將兩者都放入該區域的 objects。

        Args:
            pedestrians: 行人物件列表(每個 obj 應包含 'class_id', 'region', 'confidence' 等)
            traffic_lights: 紅綠燈物件列表(每個 obj 應包含 'class_id', 'region', 'confidence' 等)

        Returns:
            crossing_zones: 字典,key 為 zone 名稱,value 包含 'region', 'objects', 'description'
        """
        try:
            crossing_zones = {}

            # 如果沒有任何行人,就不辨識任何 crossing zone
            if not pedestrians:
                return crossing_zones

            # (1) 按照 region 分組行人
            pedestrian_regions = {}
            for p in pedestrians:
                region = p["region"]
                pedestrian_regions.setdefault(region, []).append(p)

            # (2) 針對每個 region,看是否同時有紅綠燈
            # 建立一個 mapping: region -> { "pedestrians": [...], "traffic_lights": [...] }
            combined_regions = {}
            for region, peds in pedestrian_regions.items():
                # 取得該 region 下所有紅綠燈
                tls_in_region = [t for t in traffic_lights if t["region"] == region]
                combined_regions[region] = {
                    "pedestrians": peds,
                    "traffic_lights": tls_in_region
                }

            # (3) 按照行人數量排序,找出前兩個需要建立 crossing zone 的 region
            sorted_regions = sorted(
                combined_regions.items(),
                key=lambda x: len(x[1]["pedestrians"]),
                reverse=True
            )

            # (4) 將前兩個 region 建立 Crossing Zone,objects 同時包含行人與紅綠燈
            for idx, (region, group) in enumerate(sorted_regions[:2]):
                peds = group["pedestrians"]
                tls  = group["traffic_lights"]
                has_nearby_signals = len(tls) > 0

                # 生成 zone_name(基於 region 方向 + idx 決定主/次 crossing)
                direction = self._get_directional_description(region)
                if direction and direction != "central":
                    zone_name = f"{direction} crossing area"
                else:
                    zone_name = "main crossing area" if idx == 0 else "secondary crossing area"

                # 組合 description
                description = f"Pedestrian crossing area with {len(peds)} "
                description += "person" if len(peds) == 1 else "people"
                if direction:
                    description += f" in {direction} direction"
                if has_nearby_signals:
                    description += " near traffic signals"

                # ======= 將行人 + 同區紅綠燈一併放入 objects =======
                obj_list = ["pedestrian"] * len(peds)
                if has_nearby_signals:
                    obj_list += ["traffic light"] * len(tls)

                crossing_zones[zone_name] = {
                    "region": region,
                    "objects": obj_list,
                    "description": description
                }

            return crossing_zones

        except Exception as e:
            logger.error(f"Error in _analyze_crossing_patterns: {str(e)}")
            logger.error(traceback.format_exc())
            return {}


    def _analyze_traffic_zones(self, vehicles: List[Dict]) -> Dict:
        """
        分析車輛分布以識別具有方向感知的交通區域

        Args:
            vehicles: 車輛物件列表

        Returns:
            識別出的交通區域字典
        """
        try:
            traffic_zones = {}

            if not vehicles:
                return traffic_zones

            # 按區域分組車輛
            vehicle_regions = {}
            for v in vehicles:
                region = v["region"]
                if region not in vehicle_regions:
                    vehicle_regions[region] = []
                vehicle_regions[region].append(v)

            # 為有車輛的區域創建交通區域
            main_traffic_region = max(vehicle_regions.items(), key=lambda x: len(x[1]), default=(None, []))

            if main_traffic_region[0] is not None:
                region = main_traffic_region[0]
                vehicles_in_region = main_traffic_region[1]

                # 獲取車輛類型列表用於描述
                vehicle_types = [v["class_name"] for v in vehicles_in_region]
                unique_types = list(set(vehicle_types))

                # 獲取方向描述
                direction = self._get_directional_description(region)

                # 創建描述性區域
                traffic_zones["vehicle_zone"] = {
                    "region": region,
                    "objects": vehicle_types,
                    "description": f"Vehicle traffic area with {', '.join(unique_types[:3])}" +
                                (f" in {direction} area" if direction else "")
                }

                # 如果車輛分布在多個區域,創建次要區域
                if len(vehicle_regions) > 1:
                    # 獲取第二大車輛聚集區域
                    sorted_regions = sorted(vehicle_regions.items(), key=lambda x: len(x[1]), reverse=True)
                    if len(sorted_regions) > 1:
                        second_region, second_vehicles = sorted_regions[1]
                        direction = self._get_directional_description(second_region)
                        vehicle_types = [v["class_name"] for v in second_vehicles]
                        unique_types = list(set(vehicle_types))

                        traffic_zones["secondary_vehicle_zone"] = {
                            "region": second_region,
                            "objects": vehicle_types,
                            "description": f"Secondary traffic area with {', '.join(unique_types[:2])}" +
                                        (f" in {direction} direction" if direction else "")
                        }

            return traffic_zones

        except Exception as e:
            logger.error(f"Error analyzing traffic zones: {str(e)}")
            logger.error(traceback.format_exc())
            return {}

    def _get_directional_description(self, region: str) -> str:
        """
        將區域名稱轉換為方位描述(東西南北)

        Args:
            region: 區域名稱

        Returns:
            方位描述字串
        """
        try:
            region_lower = region.lower()

            if "top" in region_lower and "left" in region_lower:
                return "northwest"
            elif "top" in region_lower and "right" in region_lower:
                return "northeast"
            elif "bottom" in region_lower and "left" in region_lower:
                return "southwest"
            elif "bottom" in region_lower and "right" in region_lower:
                return "southeast"
            elif "top" in region_lower:
                return "north"
            elif "bottom" in region_lower:
                return "south"
            elif "left" in region_lower:
                return "west"
            elif "right" in region_lower:
                return "east"
            else:
                return "central"

        except Exception as e:
            logger.error(f"Error getting directional description for region '{region}': {str(e)}")
            return "central"

    def _identify_park_recreational_zones(self, detected_objects: List[Dict]) -> Dict:
        """
        識別公園的休閒活動區域

        Args:
            detected_objects: 檢測到的物件列表

        Returns:
            休閒區域字典
        """
        try:
            zones = {}

            # 尋找休閒物件(運動球、風箏等)
            rec_items = []
            rec_regions = {}

            for obj in detected_objects:
                if obj["class_id"] in [32, 33, 34, 35, 38]:  # sports ball, kite, baseball bat, glove, tennis racket
                    region = obj["region"]
                    if region not in rec_regions:
                        rec_regions[region] = []
                    rec_regions[region].append(obj)
                    rec_items.append(obj["class_name"])

            if rec_items:
                main_rec_region = max(rec_regions.items(),
                                key=lambda x: len(x[1]),
                                default=(None, []))

                if main_rec_region[0] is not None:
                    zones["recreational_zone"] = {
                        "region": main_rec_region[0],
                        "objects": list(set(rec_items)),
                        "description": f"Recreational area with {', '.join(list(set(rec_items)))}"
                    }

            return zones

        except Exception as e:
            logger.error(f"Error identifying park recreational zones: {str(e)}")
            logger.error(traceback.format_exc())
            return {}

    def _identify_parking_zones(self, detected_objects: List[Dict]) -> Dict:
        """
        停車場的停車區域

        Args:
            detected_objects: 檢測到的物件列表

        Returns:
            停車區域字典
        """
        try:
            zones = {}

            # 尋找停放的汽車
            car_objs = [obj for obj in detected_objects if obj["class_id"] == 2]  # cars

            if len(car_objs) >= 3:
                # 檢查汽車是否按模式排列(簡化)
                car_positions = [obj["normalized_center"] for obj in car_objs]

                # 通過分析垂直位置檢查行模式
                y_coords = [pos[1] for pos in car_positions]
                y_clusters = {}

                # 簡化聚類 - 按相似y坐標分組汽車
                for i, y in enumerate(y_coords):
                    assigned = False
                    for cluster_y in y_clusters.keys():
                        if abs(y - cluster_y) < 0.1:  # 圖像高度的10%內
                            y_clusters[cluster_y].append(i)
                            assigned = True
                            break

                    if not assigned:
                        y_clusters[y] = [i]

                # 如果有行模式
                if max(len(indices) for indices in y_clusters.values()) >= 2:
                    zones["parking_row"] = {
                        "region": "central",
                        "objects": ["car"] * len(car_objs),
                        "description": f"Organized parking area with vehicles arranged in rows"
                    }
                else:
                    zones["parking_area"] = {
                        "region": "wide",
                        "objects": ["car"] * len(car_objs),
                        "description": f"Parking area with {len(car_objs)} vehicles"
                    }

            return zones

        except Exception as e:
            logger.error(f"Error identifying parking zones: {str(e)}")
            logger.error(traceback.format_exc())
            return {}

    def _analyze_aerial_traffic_patterns(self, vehicle_objs: List[Dict]) -> Dict:
        """
        分析空中視角的車輛交通模式

        Args:
            vehicle_objs: 車輛物件列表

        Returns:
            交通模式區域字典
        """
        try:
            zones = {}

            if not vehicle_objs:
                return zones

            # 將位置轉換為數組進行模式分析
            positions = np.array([obj["normalized_center"] for obj in vehicle_objs])

            if len(positions) >= 2:
                # 計算分布指標
                x_coords = positions[:, 0]
                y_coords = positions[:, 1]

                x_mean = np.mean(x_coords)
                y_mean = np.mean(y_coords)
                x_std = np.std(x_coords)
                y_std = np.std(y_coords)

                # 判斷車輛是否組織成車道
                if x_std < y_std * 0.5:
                    # 車輛垂直對齊 - 表示南北交通
                    zones["vertical_traffic_flow"] = {
                        "region": "central_vertical",
                        "objects": [obj["class_name"] for obj in vehicle_objs[:5]],
                        "description": "North-south traffic flow visible from aerial view"
                    }
                elif y_std < x_std * 0.5:
                    # 車輛水平對齊 - 表示東西交通
                    zones["horizontal_traffic_flow"] = {
                        "region": "central_horizontal",
                        "objects": [obj["class_name"] for obj in vehicle_objs[:5]],
                        "description": "East-west traffic flow visible from aerial view"
                    }
                else:
                    # 車輛多方向 - 表示十字路口
                    zones["intersection_traffic"] = {
                        "region": "central",
                        "objects": [obj["class_name"] for obj in vehicle_objs[:5]],
                        "description": "Multi-directional traffic at intersection visible from aerial view"
                    }

            return zones

        except Exception as e:
            logger.error(f"Error analyzing aerial traffic patterns: {str(e)}")
            logger.error(traceback.format_exc())
            return {}

    def _identify_aerial_intersection_features(self, detected_objects: List[Dict]) -> Dict:
        """
        空中視角十字路口特徵

        Args:
            detected_objects: 檢測到的物件列表

        Returns:
            十字路口特徵區域字典
        """
        try:
            zones = {}

            # 檢查交通信號
            traffic_light_objs = [obj for obj in detected_objects if obj["class_id"] == 9]
            if traffic_light_objs:
                zones["traffic_control_pattern"] = {
                    "region": "intersection",
                    "objects": ["traffic light"] * len(traffic_light_objs),
                    "description": f"Intersection traffic control with {len(traffic_light_objs)} signals visible from above"
                }

            # 人行道從空中視角的情境推斷
            zones["crossing_pattern"] = {
                "region": "central",
                "objects": ["inferred crosswalk"],
                "description": "Crossing pattern visible from aerial perspective"
            }

            return zones

        except Exception as e:
            logger.error(f"Error identifying aerial intersection features: {str(e)}")
            logger.error(traceback.format_exc())
            return {}

    def _identify_aerial_plaza_features(self, people_objs: List[Dict]) -> Dict:
        """
        識別空中視角廣場特徵

        Args:
            people_objs: 行人物件列表

        Returns:
            廣場特徵區域字典
        """
        try:
            zones = {}

            if people_objs:
                # 檢查人群是否聚集在中央區域
                central_people = [obj for obj in people_objs
                                if "middle" in obj["region"]]

                if central_people:
                    zones["central_gathering"] = {
                        "region": "middle_center",
                        "objects": ["person"] * len(central_people),
                        "description": f"Central plaza gathering area with {len(central_people)} people viewed from above"
                    }

            return zones

        except Exception as e:
            logger.error(f"Error identifying aerial plaza features: {str(e)}")
            logger.error(traceback.format_exc())
            return {}

    def _identify_asian_pedestrian_pathway(self, detected_objects: List[Dict]) -> Dict:
        """
        亞洲文化場景中的行人通道

        Args:
            detected_objects: 檢測到的物件列表

        Returns:
            行人通道區域字典
        """
        try:
            zones = {}

            pathway_items = []
            pathway_regions = {}

            # 提取人群用於通道分析
            people_objs = [obj for obj in detected_objects if obj["class_id"] == 0]

            # 分析人群是否形成線形(商業街的特徵)
            people_positions = [obj["normalized_center"] for obj in people_objs]

            structured_path = False
            path_direction = "meandering"

            if len(people_positions) >= 3:
                # 檢查人群是否沿相似y坐標排列(水平路徑)
                y_coords = [pos[1] for pos in people_positions]
                y_mean = sum(y_coords) / len(y_coords)
                y_variance = sum((y - y_mean)**2 for y in y_coords) / len(y_coords)

                horizontal_path = y_variance < 0.05  # 低變異表示水平對齊

                # 檢查人群是否沿相似x坐標排列(垂直路徑)
                x_coords = [pos[0] for pos in people_positions]
                x_mean = sum(x_coords) / len(x_coords)
                x_variance = sum((x - x_mean)**2 for x in x_coords) / len(x_coords)

                vertical_path = x_variance < 0.05  # 低變異表示垂直對齊

                structured_path = horizontal_path or vertical_path
                path_direction = "horizontal" if horizontal_path else "vertical" if vertical_path else "meandering"

            # 收集通道物件(人、自行車、摩托車在中間區域)
            for obj in detected_objects:
                if obj["class_id"] in [0, 1, 3]:  # Person, bicycle, motorcycle
                    y_pos = obj["normalized_center"][1]
                    # 按垂直位置分組(圖像中間可能是通道)
                    if 0.25 <= y_pos <= 0.75:
                        region = obj["region"]
                        if region not in pathway_regions:
                            pathway_regions[region] = []
                        pathway_regions[region].append(obj)
                        pathway_items.append(obj["class_name"])

            if pathway_items:
                path_desc = "Pedestrian walkway with people moving through the commercial area"
                if structured_path:
                    path_desc = f"{path_direction.capitalize()} pedestrian walkway with organized foot traffic"

                zones["pedestrian_pathway"] = {
                    "region": "middle_center",  # 假設:通道通常在中間
                    "objects": list(set(pathway_items)),
                    "description": path_desc
                }

            return zones

        except Exception as e:
            logger.error(f"Error identifying Asian pedestrian pathway: {str(e)}")
            logger.error(traceback.format_exc())
            return {}

    def _identify_vendor_zones(self, detected_objects: List[Dict]) -> Dict:
        """
        識別攤販區域

        Args:
            detected_objects: 檢測到的物件列表

        Returns:
            攤販區域字典
        """
        try:
            zones = {}

            # 識別攤販區域(小攤/商店 - 從情境推斷)
            has_small_objects = any(obj["class_id"] in [24, 26, 39, 41] for obj in detected_objects)  # bags, bottles, cups
            has_people = any(obj["class_id"] == 0 for obj in detected_objects)

            if has_small_objects and has_people:
                # 可能的攤販區域是人群和小物件聚集的地方
                small_obj_regions = {}

                for obj in detected_objects:
                    if obj["class_id"] in [24, 26, 39, 41, 67]:  # bags, bottles, cups, phones
                        region = obj["region"]
                        if region not in small_obj_regions:
                            small_obj_regions[region] = []
                        small_obj_regions[region].append(obj)

                if small_obj_regions:
                    main_vendor_region = max(small_obj_regions.items(),
                                        key=lambda x: len(x[1]),
                                        default=(None, []))

                    if main_vendor_region[0] is not None:
                        vendor_items = [obj["class_name"] for obj in main_vendor_region[1]]
                        zones["vendor_zone"] = {
                            "region": main_vendor_region[0],
                            "objects": list(set(vendor_items)),
                            "description": "Vendor or market stall area with small merchandise"
                        }

            return zones

        except Exception as e:
            logger.error(f"Error identifying vendor zones: {str(e)}")
            logger.error(traceback.format_exc())
            return {}

    def _identify_upscale_decorative_zones(self, detected_objects: List[Dict]) -> Dict:
        """
        識別高級餐飲的裝飾區域

        Args:
            detected_objects: 檢測到的物件列表

        Returns:
            裝飾區域字典
        """
        try:
            zones = {}

            decor_items = []
            decor_regions = {}

            # 尋找裝飾元素(花瓶、酒杯、未使用的餐具)
            for obj in detected_objects:
                if obj["class_id"] in [75, 40]:  # Vase, wine glass
                    region = obj["region"]
                    if region not in decor_regions:
                        decor_regions[region] = []
                    decor_regions[region].append(obj)
                    decor_items.append(obj["class_name"])

            if decor_items:
                main_decor_region = max(decor_regions.items(),
                                    key=lambda x: len(x[1]),
                                    default=(None, []))

                if main_decor_region[0] is not None:
                    zones["decorative_zone"] = {
                        "region": main_decor_region[0],
                        "objects": list(set(decor_items)),
                        "description": f"Decorative area with {', '.join(list(set(decor_items)))}"
                    }

            return zones

        except Exception as e:
            logger.error(f"Error identifying upscale decorative zones: {str(e)}")
            logger.error(traceback.format_exc())
            return {}

    def _identify_dining_seating_zones(self, detected_objects: List[Dict]) -> Dict:
        """
        識別餐廳座位安排區域

        Args:
            detected_objects: 檢測到的物件列表

        Returns:
            座位區域字典
        """
        try:
            zones = {}

            # 識別座位安排區域
            chairs = [obj for obj in detected_objects if obj["class_id"] == 56]  # chairs
            if len(chairs) >= 2:
                chair_regions = {}
                for obj in chairs:
                    region = obj["region"]
                    if region not in chair_regions:
                        chair_regions[region] = []
                    chair_regions[region].append(obj)

                if chair_regions:
                    main_seating_region = max(chair_regions.items(),
                                        key=lambda x: len(x[1]),
                                        default=(None, []))

                    if main_seating_region[0] is not None:
                        zones["dining_seating_zone"] = {
                            "region": main_seating_region[0],
                            "objects": ["chair"] * len(main_seating_region[1]),
                            "description": f"Formal dining seating arrangement with {len(main_seating_region[1])} chairs"
                        }

            return zones

        except Exception as e:
            logger.error(f"Error identifying dining seating zones: {str(e)}")
            logger.error(traceback.format_exc())
            return {}

    def _identify_serving_zones(self, detected_objects: List[Dict], existing_zones: Dict) -> Dict:
        """
        識別服務區域

        Args:
            detected_objects: 檢測到的物件列表
            existing_zones: 已存在的功能區域

        Returns:
            服務區域字典
        """
        try:
            zones = {}

            serving_items = []
            serving_regions = {}

            # 服務區域可能有瓶子、碗、容器
            for obj in detected_objects:
                if obj["class_id"] in [39, 45]:  # Bottle, bowl
                    # 檢查是否在與主餐桌不同的區域
                    if "formal_dining_zone" in existing_zones and obj["region"] != existing_zones["formal_dining_zone"]["region"]:
                        region = obj["region"]
                        if region not in serving_regions:
                            serving_regions[region] = []
                        serving_regions[region].append(obj)
                        serving_items.append(obj["class_name"])

            if serving_items:
                main_serving_region = max(serving_regions.items(),
                                    key=lambda x: len(x[1]),
                                    default=(None, []))

                if main_serving_region[0] is not None:
                    zones["serving_zone"] = {
                        "region": main_serving_region[0],
                        "objects": list(set(serving_items)),
                        "description": f"Serving or sideboard area with {', '.join(list(set(serving_items)))}"
                    }

            return zones

        except Exception as e:
            logger.error(f"Error identifying serving zones: {str(e)}")
            logger.error(traceback.format_exc())
            return {}

    def _identify_building_zones(self, detected_objects: List[Dict]) -> Dict:
        """
        識別建築區域(從場景情境推斷)

        Args:
            detected_objects: 檢測到的物件列表

        Returns:
            建築區域字典
        """
        try:
            zones = {}

            # 側邊建築區域(從場景情境推斷)
            # 檢查是否有實際可能包含建築物的區域
            left_side_regions = ["top_left", "middle_left", "bottom_left"]
            right_side_regions = ["top_right", "middle_right", "bottom_right"]

            # 檢查左側
            left_building_evidence = True
            for region in left_side_regions:
                # 如果此區域有很多車輛或人群,不太可能是建築物
                vehicle_in_region = any(obj["region"] == region and obj["class_id"] in [1, 2, 3, 5, 7]
                                    for obj in detected_objects)
                people_in_region = any(obj["region"] == region and obj["class_id"] == 0
                                    for obj in detected_objects)

                if vehicle_in_region or people_in_region:
                    left_building_evidence = False
                    break

            # 檢查右側
            right_building_evidence = True
            for region in right_side_regions:
                # 如果此區域有很多車輛或人群,不太可能是建築物
                vehicle_in_region = any(obj["region"] == region and obj["class_id"] in [1, 2, 3, 5, 7]
                                    for obj in detected_objects)
                people_in_region = any(obj["region"] == region and obj["class_id"] == 0
                                    for obj in detected_objects)

                if vehicle_in_region or people_in_region:
                    right_building_evidence = False
                    break

            # 如果證據支持,添加建築區域
            if left_building_evidence:
                zones["building_zone_left"] = {
                    "region": "middle_left",
                    "objects": ["building"],  # 推斷
                    "description": "Tall buildings line the left side of the street"
                }

            if right_building_evidence:
                zones["building_zone_right"] = {
                    "region": "middle_right",
                    "objects": ["building"],  # 推斷
                    "description": "Tall buildings line the right side of the street"
                }

            return zones

        except Exception as e:
            logger.error(f"Error identifying building zones: {str(e)}")
            logger.error(traceback.format_exc())
            return {}

    def _identify_financial_pedestrian_zones(self, detected_objects: List[Dict]) -> Dict:
        """
        識別金融區的行人區域

        Args:
            detected_objects: 檢測到的物件列表

        Returns:
            行人區域字典
        """
        try:
            zones = {}

            # 識別行人區域(如果有人群)
            people_objs = [obj for obj in detected_objects if obj["class_id"] == 0]
            if people_objs:
                people_regions = {}
                for obj in people_objs:
                    region = obj["region"]
                    if region not in people_regions:
                        people_regions[region] = []
                    people_regions[region].append(obj)

                if people_regions:
                    main_pedestrian_region = max(people_regions.items(),
                                            key=lambda x: len(x[1]),
                                            default=(None, []))

                    if main_pedestrian_region[0] is not None:
                        zones["pedestrian_zone"] = {
                            "region": main_pedestrian_region[0],
                            "objects": ["person"] * len(main_pedestrian_region[1]),
                            "description": f"Pedestrian area with {len(main_pedestrian_region[1])} people navigating the financial district"
                        }

            return zones

        except Exception as e:
            logger.error(f"Error identifying financial pedestrian zones: {str(e)}")
            logger.error(traceback.format_exc())
            return {}

    def _create_landmark_auxiliary_zones(self, landmark: Dict, index: int) -> Dict:
        """
        創建地標相關的輔助區域(攝影區、紀念品區等)

        Args:
            landmark: 地標物件字典
            index: 地標索引

        Returns:
            輔助區域字典
        """
        try:
            auxiliary_zones = {}
            landmark_region = landmark.get("region", "middle_center")
            landmark_name = landmark.get("class_name", "Landmark")

            # 創建攝影區
            # 根據地標位置調整攝影區位置(地標前方通常是攝影區)
            region_mapping = {
                "top_left": "bottom_right",
                "top_center": "bottom_center",
                "top_right": "bottom_left",
                "middle_left": "middle_right",
                "middle_center": "bottom_center",
                "middle_right": "middle_left",
                "bottom_left": "top_right",
                "bottom_center": "top_center",
                "bottom_right": "top_left"
            }

            photo_region = region_mapping.get(landmark_region, landmark_region)

            photo_key = f"{landmark_name.lower().replace(' ', '_')}_photography_spot"
            auxiliary_zones[photo_key] = {
                "name": f"{landmark_name} Photography Spot",
                "description": f"Popular position for photographing {landmark_name} with optimal viewing angle.",
                "objects": ["camera", "person", "cell phone"],
                "region": photo_region,
                "primary_function": "Tourist photography"
            }

            # 如果是著名地標,可能有紀念品販售區
            if landmark.get("confidence", 0) > 0.7:  # 高置信度地標更可能有紀念品區
                # 根據地標位置找到適合的紀念品區位置(通常在地標附近但不直接在地標上)
                adjacent_regions = {
                    "top_left": ["top_center", "middle_left"],
                    "top_center": ["top_left", "top_right"],
                    "top_right": ["top_center", "middle_right"],
                    "middle_left": ["top_left", "bottom_left"],
                    "middle_center": ["middle_left", "middle_right"],
                    "middle_right": ["top_right", "bottom_right"],
                    "bottom_left": ["middle_left", "bottom_center"],
                    "bottom_center": ["bottom_left", "bottom_right"],
                    "bottom_right": ["bottom_center", "middle_right"]
                }

                if landmark_region in adjacent_regions:
                    souvenir_region = adjacent_regions[landmark_region][0]  # 選擇第一個相鄰區域

                    souvenir_key = f"{landmark_name.lower().replace(' ', '_')}_souvenir_area"
                    auxiliary_zones[souvenir_key] = {
                        "name": f"{landmark_name} Souvenir Area",
                        "description": f"Area where visitors can purchase souvenirs and memorabilia related to {landmark_name}.",
                        "objects": ["person", "handbag", "backpack"],
                        "region": souvenir_region,
                        "primary_function": "Tourism commerce"
                    }

            return auxiliary_zones

        except Exception as e:
            logger.error(f"Error creating landmark auxiliary zones: {str(e)}")
            logger.error(traceback.format_exc())
            return {}