Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,840 Bytes
1e4c9bc 595e0a5 1e4c9bc 595e0a5 1e4c9bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
import sqlite3
import traceback
import random
from typing import List, Dict
from breed_health_info import breed_health_info, default_health_note
from breed_noise_info import breed_noise_info
from dog_database import get_dog_description
from scoring_calculation_system import UserPreferences, calculate_compatibility_score
def get_breed_recommendations(user_prefs: UserPreferences, top_n: int = 15) -> List[Dict]:
"""基於使用者偏好推薦狗品種,確保正確的分數排序"""
print(f"Starting get_breed_recommendations with top_n={top_n}")
recommendations = []
seen_breeds = set()
try:
# 獲取所有品種
conn = sqlite3.connect('animal_detector.db')
cursor = conn.cursor()
cursor.execute("SELECT Breed FROM AnimalCatalog")
all_breeds = cursor.fetchall()
conn.close()
print(f"Total breeds in database: {len(all_breeds)}")
# 收集所有品種的分數
for breed_tuple in all_breeds:
breed = breed_tuple[0]
base_breed = breed.split('(')[0].strip()
# 過濾掉野生動物品種
if base_breed == 'Dhole':
continue
if base_breed in seen_breeds:
continue
seen_breeds.add(base_breed)
# 獲取品種資訊
breed_info = get_dog_description(breed)
if not isinstance(breed_info, dict):
continue
# 調整品種尺寸過濾邏輯,避免過度限制候選品種
if user_prefs.size_preference != "no_preference":
breed_size = breed_info.get('Size', '').lower()
user_size = user_prefs.size_preference.lower()
# 放寬尺寸匹配條件,允許相鄰尺寸的品種通過篩選
size_compatibility = False
if user_size == 'small':
size_compatibility = breed_size in ['small', 'medium']
elif user_size == 'medium':
size_compatibility = breed_size in ['small', 'medium', 'large']
elif user_size == 'large':
size_compatibility = breed_size in ['medium', 'large']
else:
size_compatibility = True
if not size_compatibility:
continue
# 獲取噪音資訊
noise_info = breed_noise_info.get(breed, {
"noise_notes": "Noise information not available",
"noise_level": "Unknown",
"source": "N/A"
})
# 將噪音資訊整合到品種資訊中
breed_info['noise_info'] = noise_info
# 計算基礎相容性分數
compatibility_scores = calculate_compatibility_score(breed_info, user_prefs)
# 計算品種特定加分
breed_bonus = 0.0
# 壽命加分
try:
lifespan = breed_info.get('Lifespan', '10-12 years')
years = [int(x) for x in lifespan.split('-')[0].split()[0:1]]
longevity_bonus = min(0.02, (max(years) - 10) * 0.005)
breed_bonus += longevity_bonus
except:
pass
# 性格特徵加分
temperament = breed_info.get('Temperament', '').lower()
positive_traits = ['friendly', 'gentle', 'affectionate', 'intelligent']
negative_traits = ['aggressive', 'stubborn', 'dominant']
breed_bonus += sum(0.01 for trait in positive_traits if trait in temperament)
breed_bonus -= sum(0.01 for trait in negative_traits if trait in temperament)
# 與孩童相容性加分
if user_prefs.has_children:
if breed_info.get('Good with Children') == 'Yes':
breed_bonus += 0.02
elif breed_info.get('Good with Children') == 'No':
breed_bonus -= 0.03
# 噪音相關加分
if user_prefs.noise_tolerance == 'low':
if noise_info['noise_level'].lower() == 'high':
breed_bonus -= 0.03
elif noise_info['noise_level'].lower() == 'low':
breed_bonus += 0.02
elif user_prefs.noise_tolerance == 'high':
if noise_info['noise_level'].lower() == 'high':
breed_bonus += 0.01
# 計算最終分數並加入自然變異
breed_hash = hash(breed)
random.seed(breed_hash)
# Add small natural variation to avoid identical scores
natural_variation = random.uniform(-0.008, 0.008)
breed_bonus = round(breed_bonus + natural_variation, 4)
final_score = round(min(1.0, compatibility_scores['overall'] + breed_bonus), 4)
recommendations.append({
'breed': breed,
'base_score': round(compatibility_scores['overall'], 4),
'bonus_score': round(breed_bonus, 4),
'final_score': final_score,
'scores': compatibility_scores,
'info': breed_info,
'noise_info': noise_info
})
print(f"Breeds after filtering: {len(recommendations)}")
# 按照 final_score 排序
recommendations.sort(key=lambda x: (round(-x['final_score'], 4), x['breed']))
# 修正後的推薦選擇邏輯,移除有問題的分數比較
final_recommendations = []
# 直接選取前 top_n 個品種,確保返回完整數量
for i, rec in enumerate(recommendations[:top_n]):
rec['rank'] = i + 1
final_recommendations.append(rec)
print(f"Final recommendations count: {len(final_recommendations)}")
# 驗證最終排序
for i in range(len(final_recommendations)-1):
current = final_recommendations[i]
next_rec = final_recommendations[i+1]
if current['final_score'] < next_rec['final_score']:
print(f"Warning: Sorting error detected!")
print(f"#{i+1} {current['breed']}: {current['final_score']}")
print(f"#{i+2} {next_rec['breed']}: {next_rec['final_score']}")
# 交換位置
final_recommendations[i], final_recommendations[i+1] = \
final_recommendations[i+1], final_recommendations[i]
# 打印最終結果以供驗證
print("\nFinal Rankings:")
for rec in final_recommendations:
print(f"#{rec['rank']} {rec['breed']}")
print(f"Base Score: {rec['base_score']:.4f}")
print(f"Bonus: {rec['bonus_score']:.4f}")
print(f"Final Score: {rec['final_score']:.4f}\n")
return final_recommendations
except Exception as e:
print(f"Error in get_breed_recommendations: {str(e)}")
print(f"Traceback: {traceback.format_exc()}")
def _format_dimension_scores(dimension_scores: Dict) -> str:
"""Format individual dimension scores as badges"""
if not dimension_scores:
return ""
badges_html = '<div class="dimension-badges">'
for dimension, score in dimension_scores.items():
if isinstance(score, (int, float)):
score_percent = score * 100
else:
score_percent = 75 # default
if score_percent >= 80:
badge_class = "badge-high"
elif score_percent >= 60:
badge_class = "badge-medium"
else:
badge_class = "badge-low"
dimension_label = dimension.replace('_', ' ').title()
badges_html += f'''
<span class="dimension-badge {badge_class}">
{dimension_label}: {score_percent:.0f}%
</span>
'''
badges_html += '</div>'
return badges_html
def calculate_breed_bonus_factors(breed_info: dict, user_prefs: 'UserPreferences') -> tuple:
"""計算品種額外加分因素並返回原因列表"""
bonus = 0.0
reasons = []
# 壽命加分
try:
lifespan = breed_info.get('Lifespan', '10-12 years')
years = [int(x) for x in lifespan.split('-')[0].split()[0:1]]
if max(years) >= 12:
bonus += 0.02
reasons.append("Above-average lifespan")
except:
pass
# 性格特徵加分
temperament = breed_info.get('Temperament', '').lower()
if any(trait in temperament for trait in ['friendly', 'gentle', 'affectionate']):
bonus += 0.01
reasons.append("Positive temperament traits")
# 與孩童相容性
if breed_info.get('Good with Children') == 'Yes':
bonus += 0.01
reasons.append("Excellent with children")
return bonus, reasons
def generate_breed_characteristics_data(breed_info: dict) -> List[tuple]:
"""生成品種特徵資料列表"""
return [
('Size', breed_info.get('Size', 'Unknown')),
('Exercise Needs', breed_info.get('Exercise Needs', 'Moderate')),
('Grooming Needs', breed_info.get('Grooming Needs', 'Moderate')),
('Good with Children', breed_info.get('Good with Children', 'Yes')),
('Temperament', breed_info.get('Temperament', '')),
('Lifespan', breed_info.get('Lifespan', '10-12 years')),
('Description', breed_info.get('Description', ''))
]
def parse_noise_information(noise_info: dict) -> tuple:
"""解析噪音資訊並返回結構化資料"""
noise_notes = noise_info.get('noise_notes', '').split('\n')
noise_characteristics = []
barking_triggers = []
noise_level = ''
current_section = None
for line in noise_notes:
line = line.strip()
if 'Typical noise characteristics:' in line:
current_section = 'characteristics'
elif 'Noise level:' in line:
noise_level = line.replace('Noise level:', '').strip()
elif 'Barking triggers:' in line:
current_section = 'triggers'
elif line.startswith('•'):
if current_section == 'characteristics':
noise_characteristics.append(line[1:].strip())
elif current_section == 'triggers':
barking_triggers.append(line[1:].strip())
return noise_characteristics, barking_triggers, noise_level
def parse_health_information(health_info: dict) -> tuple:
"""解析健康資訊並返回結構化資料"""
health_notes = health_info.get('health_notes', '').split('\n')
health_considerations = []
health_screenings = []
current_section = None
for line in health_notes:
line = line.strip()
if 'Common breed-specific health considerations' in line:
current_section = 'considerations'
elif 'Recommended health screenings:' in line:
current_section = 'screenings'
elif line.startswith('•'):
if current_section == 'considerations':
health_considerations.append(line[1:].strip())
elif current_section == 'screenings':
health_screenings.append(line[1:].strip())
return health_considerations, health_screenings
def generate_dimension_scores_for_display(base_score: float, rank: int, breed: str,
semantic_score: float = 0.7,
comparative_bonus: float = 0.0,
lifestyle_bonus: float = 0.0,
is_description_search: bool = False) -> dict:
"""為顯示生成維度分數"""
random.seed(hash(breed) + rank) # 一致的隨機性
if is_description_search:
# Description search: 創建更自然的分數分佈在50%-95%範圍內
score_variance = 0.08 if base_score > 0.7 else 0.06
scores = {
'space': max(0.50, min(0.95,
base_score * 0.92 + (lifestyle_bonus * 0.5) + random.uniform(-score_variance, score_variance))),
'exercise': max(0.50, min(0.95,
base_score * 0.88 + (lifestyle_bonus * 0.4) + random.uniform(-score_variance, score_variance))),
'grooming': max(0.50, min(0.95,
base_score * 0.85 + (comparative_bonus * 0.4) + random.uniform(-score_variance, score_variance))),
'experience': max(0.50, min(0.95,
base_score * 0.87 + (lifestyle_bonus * 0.3) + random.uniform(-score_variance, score_variance))),
'noise': max(0.50, min(0.95,
base_score * 0.83 + (lifestyle_bonus * 0.6) + random.uniform(-score_variance, score_variance))),
'overall': base_score
}
else:
# 傳統搜尋結果的分數結構會在呼叫處理中傳入
scores = {'overall': base_score}
return scores
|