Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,352 Bytes
595e0a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 |
import random
import hashlib
import numpy as np
import sqlite3
import re
import traceback
from typing import List, Dict, Tuple, Optional, Any
from dataclasses import dataclass
from sentence_transformers import SentenceTransformer
import torch
from sklearn.metrics.pairwise import cosine_similarity
from dog_database import get_dog_description
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
from scoring_calculation_system import UserPreferences, calculate_compatibility_score, UnifiedScoringSystem, calculate_unified_breed_scores
from query_understanding import QueryUnderstandingEngine, analyze_user_query
from constraint_manager import ConstraintManager, apply_breed_constraints
from multi_head_scorer import MultiHeadScorer, score_breed_candidates, BreedScore
from score_calibrator import ScoreCalibrator, calibrate_breed_scores
from config_manager import get_config_manager, get_standardized_breed_data
class UserQueryAnalyzer:
"""
用戶查詢分析器
專門處理用戶輸入分析、生活方式關鍵字提取和偏好解析
"""
def __init__(self, breed_list: List[str]):
"""初始化用戶查詢分析器"""
self.breed_list = breed_list
self.comparative_keywords = {
'most': 1.0, 'love': 1.0, 'prefer': 0.9, 'like': 0.8,
'then': 0.7, 'second': 0.7, 'followed': 0.6,
'third': 0.5, 'least': 0.3, 'dislike': 0.2
}
self.stop_words = {
'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by',
'from', 'up', 'about', 'into', 'through', 'during', 'before', 'after', 'above', 'below',
'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'do', 'does', 'did',
'will', 'would', 'could', 'should', 'may', 'might', 'must', 'can', 'i', 'me', 'my', 'myself',
'we', 'our', 'ours', 'ourselves', 'you', 'your', 'yours', 'yourself', 'yourselves', 'he',
'him', 'his', 'himself', 'she', 'her', 'hers', 'herself', 'it', 'its', 'itself', 'they',
'them', 'their', 'theirs', 'themselves'
}
def parse_comparative_preferences(self, user_input: str) -> Dict[str, float]:
"""解析比較性偏好表達"""
breed_scores = {}
# 標準化輸入
text = user_input.lower()
# 找到品種名稱和偏好關鍵字
for breed in self.breed_list:
breed_display = breed.replace('_', ' ').lower()
breed_words = breed_display.split()
# 檢查是否提到此品種
breed_mentioned = False
for word in breed_words:
if word in text:
breed_mentioned = True
break
if breed_mentioned:
# 在附近找到偏好關鍵字
breed_score = 0.5 # 預設分數
# 在品種名稱 50 字符內尋找關鍵字
breed_pos = text.find(breed_words[0])
if breed_pos != -1:
# 檢查背景中的關鍵字
context_start = max(0, breed_pos - 50)
context_end = min(len(text), breed_pos + 50)
context = text[context_start:context_end]
for keyword, score in self.comparative_keywords.items():
if keyword in context:
breed_score = max(breed_score, score)
breed_scores[breed] = breed_score
return breed_scores
def extract_lifestyle_keywords(self, user_input: str) -> Dict[str, List[str]]:
"""增強的生活方式關鍵字提取,具有更好的模式匹配"""
keywords = {
'living_space': [],
'activity_level': [],
'family_situation': [],
'noise_preference': [],
'size_preference': [],
'care_level': [],
'special_needs': [],
'intelligence_preference': [],
'grooming_preference': [],
'lifespan_preference': [],
'temperament_preference': [],
'experience_level': []
}
text = user_input.lower()
# 增強居住空間檢測
apartment_terms = ['apartment', 'flat', 'condo', 'small space', 'city living', 'urban', 'no yard', 'indoor']
house_terms = ['house', 'yard', 'garden', 'backyard', 'large space', 'suburban', 'rural', 'farm']
if any(term in text for term in apartment_terms):
keywords['living_space'].append('apartment')
if any(term in text for term in house_terms):
keywords['living_space'].append('house')
# 增強活動水平檢測
high_activity = ['active', 'energetic', 'exercise', 'hiking', 'running', 'outdoor', 'sports', 'jogging',
'athletic', 'adventure', 'vigorous', 'high energy', 'workout']
low_activity = ['calm', 'lazy', 'indoor', 'low energy', 'couch', 'sedentary', 'relaxed',
'peaceful', 'quiet lifestyle', 'minimal exercise']
moderate_activity = ['moderate', 'walk', 'daily walks', 'light exercise']
if any(term in text for term in high_activity):
keywords['activity_level'].append('high')
if any(term in text for term in low_activity):
keywords['activity_level'].append('low')
if any(term in text for term in moderate_activity):
keywords['activity_level'].append('moderate')
# 增強家庭情況檢測
children_terms = ['children', 'kids', 'family', 'child', 'toddler', 'baby', 'teenage', 'school age']
elderly_terms = ['elderly', 'senior', 'old', 'retirement', 'aged', 'mature']
single_terms = ['single', 'alone', 'individual', 'solo', 'myself']
if any(term in text for term in children_terms):
keywords['family_situation'].append('children')
if any(term in text for term in elderly_terms):
keywords['family_situation'].append('elderly')
if any(term in text for term in single_terms):
keywords['family_situation'].append('single')
# 增強噪音偏好檢測
quiet_terms = ['quiet', 'silent', 'noise-sensitive', 'peaceful', 'no barking', 'minimal noise',
'soft-spoken', 'calm', 'tranquil']
noise_ok_terms = ['loud', 'barking ok', 'noise tolerant', 'vocal', 'doesn\'t matter']
if any(term in text for term in quiet_terms):
keywords['noise_preference'].append('low')
if any(term in text for term in noise_ok_terms):
keywords['noise_preference'].append('high')
# 增強體型偏好檢測
small_terms = ['small', 'tiny', 'little', 'compact', 'miniature', 'toy', 'lap dog']
large_terms = ['large', 'big', 'giant', 'huge', 'massive', 'great']
medium_terms = ['medium', 'moderate size', 'average', 'mid-sized']
if any(term in text for term in small_terms):
keywords['size_preference'].append('small')
if any(term in text for term in large_terms):
keywords['size_preference'].append('large')
if any(term in text for term in medium_terms):
keywords['size_preference'].append('medium')
# 增強照護水平檢測
low_care = ['low maintenance', 'easy care', 'simple', 'minimal grooming', 'wash and go']
high_care = ['high maintenance', 'grooming', 'care intensive', 'professional grooming', 'daily brushing']
if any(term in text for term in low_care):
keywords['care_level'].append('low')
if any(term in text for term in high_care):
keywords['care_level'].append('high')
# 智力偏好檢測(新增)
smart_terms = ['smart', 'intelligent', 'clever', 'bright', 'quick learner', 'easy to train', 'trainable', 'genius', 'brilliant']
independent_terms = ['independent', 'stubborn', 'strong-willed', 'less trainable', 'thinks for themselves']
if any(term in text for term in smart_terms):
keywords['intelligence_preference'].append('high')
if any(term in text for term in independent_terms):
keywords['intelligence_preference'].append('independent')
# 美容偏好檢測(新增)
low_grooming_terms = ['low grooming', 'minimal grooming', 'easy care', 'wash and wear', 'no grooming', 'simple coat']
high_grooming_terms = ['high grooming', 'professional grooming', 'lots of care', 'high maintenance coat', 'daily brushing', 'regular grooming']
if any(term in text for term in low_grooming_terms):
keywords['grooming_preference'].append('low')
if any(term in text for term in high_grooming_terms):
keywords['grooming_preference'].append('high')
# 壽命偏好檢測(新增)
long_lived_terms = ['long lived', 'long lifespan', 'live long', 'many years', '15+ years', 'longevity']
healthy_terms = ['healthy breed', 'few health issues', 'robust', 'hardy', 'strong constitution']
if any(term in text for term in long_lived_terms):
keywords['lifespan_preference'].append('long')
if any(term in text for term in healthy_terms):
keywords['lifespan_preference'].append('healthy')
# 氣質偏好檢測(新增)
gentle_terms = ['gentle', 'calm', 'peaceful', 'laid back', 'chill', 'mellow', 'docile']
playful_terms = ['playful', 'energetic', 'fun', 'active personality', 'lively', 'spirited', 'bouncy']
protective_terms = ['protective', 'guard', 'watchdog', 'alert', 'vigilant', 'defensive']
friendly_terms = ['friendly', 'social', 'outgoing', 'loves people', 'sociable', 'gregarious']
if any(term in text for term in gentle_terms):
keywords['temperament_preference'].append('gentle')
if any(term in text for term in playful_terms):
keywords['temperament_preference'].append('playful')
if any(term in text for term in protective_terms):
keywords['temperament_preference'].append('protective')
if any(term in text for term in friendly_terms):
keywords['temperament_preference'].append('friendly')
# 經驗水平檢測(新增)
beginner_terms = ['first time', 'beginner', 'new to dogs', 'never had', 'novice', 'inexperienced']
advanced_terms = ['experienced', 'advanced', 'dog expert', 'many dogs before', 'professional', 'seasoned']
if any(term in text for term in beginner_terms):
keywords['experience_level'].append('beginner')
if any(term in text for term in advanced_terms):
keywords['experience_level'].append('advanced')
# 增強特殊需求檢測
guard_terms = ['guard', 'protection', 'security', 'watchdog', 'protective', 'defender']
companion_terms = ['therapy', 'emotional support', 'companion', 'comfort', 'lap dog', 'cuddly']
hypoallergenic_terms = ['hypoallergenic', 'allergies', 'non-shedding', 'allergy-friendly', 'no shed']
multi_pet_terms = ['good with cats', 'cat friendly', 'multi-pet', 'other animals']
if any(term in text for term in guard_terms):
keywords['special_needs'].append('guard')
if any(term in text for term in companion_terms):
keywords['special_needs'].append('companion')
if any(term in text for term in hypoallergenic_terms):
keywords['special_needs'].append('hypoallergenic')
if any(term in text for term in multi_pet_terms):
keywords['special_needs'].append('multi_pet')
return keywords
def preprocess_text(self, text: str) -> str:
"""預處理文本"""
# 轉換為小寫
text = text.lower()
# 移除特殊字符,保留字母、數字和基本標點
text = re.sub(r'[^\w\s\-\']', ' ', text)
# 標準化空格
text = ' '.join(text.split())
return text
def generate_search_keywords(self, text: str) -> List[str]:
"""
為語義搜索生成關鍵字
Args:
text: 輸入文本
Returns:
關鍵字列表
"""
text = self.preprocess_text(text)
keywords = []
try:
# 分詞並過濾停用詞
words = text.split()
for word in words:
if len(word) > 2 and word not in self.stop_words:
keywords.append(word)
# 提取重要短語
phrases = self._extract_phrases(text)
keywords.extend(phrases)
# 移除重複項
keywords = list(set(keywords))
return keywords
except Exception as e:
print(f"Error generating search keywords: {str(e)}")
return []
def _extract_phrases(self, text: str) -> List[str]:
"""
提取重要短語
Args:
text: 輸入文本
Returns:
短語列表
"""
phrases = []
# 定義重要短語模式
phrase_patterns = [
r'good with \w+',
r'apartment \w+',
r'family \w+',
r'exercise \w+',
r'grooming \w+',
r'noise \w+',
r'training \w+',
r'health \w+',
r'\w+ friendly',
r'\w+ tolerant',
r'\w+ maintenance',
r'\w+ energy',
r'\w+ barking',
r'\w+ shedding'
]
for pattern in phrase_patterns:
matches = re.findall(pattern, text)
phrases.extend(matches)
return phrases
def analyze_sentiment(self, text: str) -> Dict[str, float]:
"""
分析文本情感
Args:
text: 輸入文本
Returns:
情感分析結果
"""
# 簡化的情感分析實現
positive_words = [
'love', 'like', 'prefer', 'enjoy', 'want', 'need', 'looking for',
'good', 'great', 'excellent', 'perfect', 'wonderful', 'amazing'
]
negative_words = [
'hate', 'dislike', 'avoid', 'don\'t want', 'no', 'not',
'bad', 'terrible', 'awful', 'horrible', 'worst', 'never'
]
words = text.lower().split()
positive_count = sum(1 for word in words if word in positive_words)
negative_count = sum(1 for word in words if word in negative_words)
total_words = len(words)
if total_words == 0:
return {'positive': 0.5, 'negative': 0.5, 'neutral': 0.0}
positive_score = positive_count / total_words
negative_score = negative_count / total_words
neutral_score = max(0, 1 - positive_score - negative_score)
return {
'positive': positive_score,
'negative': negative_score,
'neutral': neutral_score
}
def parse_user_requirements(self, user_input: str) -> Dict[str, Any]:
"""更準確地解析用戶需求"""
requirements = {
'living_space': None,
'exercise_level': None,
'preferred_size': None,
'noise_tolerance': None
}
input_lower = user_input.lower()
# 居住空間檢測
if 'apartment' in input_lower or 'small' in input_lower:
requirements['living_space'] = 'apartment'
elif 'large house' in input_lower or 'big' in input_lower:
requirements['living_space'] = 'large_house'
elif 'medium' in input_lower:
requirements['living_space'] = 'medium_house'
# 運動水平檢測
if "don't exercise" in input_lower or 'low exercise' in input_lower:
requirements['exercise_level'] = 'low'
elif any(term in input_lower for term in ['hiking', 'running', 'active']):
requirements['exercise_level'] = 'high'
elif '30 minutes' in input_lower or 'moderate' in input_lower:
requirements['exercise_level'] = 'moderate'
# 體型偏好檢測
if any(term in input_lower for term in ['small dog', 'tiny', 'toy']):
requirements['preferred_size'] = 'small'
elif any(term in input_lower for term in ['large dog', 'big dog']):
requirements['preferred_size'] = 'large'
elif 'medium' in input_lower:
requirements['preferred_size'] = 'medium'
return requirements
def analyze_user_description_enhanced(self, user_description: str) -> Dict[str, Any]:
"""增強用戶描述分析"""
text = user_description.lower()
analysis = {
'mentioned_breeds': [],
'lifestyle_keywords': {},
'preference_strength': {},
'constraint_requirements': [],
'user_context': {}
}
# 提取提及的品種
for breed in self.breed_list:
breed_display = breed.replace('_', ' ').lower()
if breed_display in text or any(word in text for word in breed_display.split()):
analysis['mentioned_breeds'].append(breed)
# 簡單偏好強度分析
if any(word in text for word in ['love', 'prefer', 'like', '喜歡', '最愛']):
analysis['preference_strength'][breed] = 0.8
else:
analysis['preference_strength'][breed] = 0.5
# 提取約束要求
if any(word in text for word in ['quiet', 'silent', 'no barking', '安靜']):
analysis['constraint_requirements'].append('low_noise')
if any(word in text for word in ['apartment', 'small space', '公寓']):
analysis['constraint_requirements'].append('apartment_suitable')
if any(word in text for word in ['children', 'kids', 'family', '小孩']):
analysis['constraint_requirements'].append('child_friendly')
# 提取用戶背景
analysis['user_context'] = {
'has_children': any(word in text for word in ['children', 'kids', '小孩']),
'living_space': 'apartment' if any(word in text for word in ['apartment', '公寓']) else 'house',
'activity_level': 'high' if any(word in text for word in ['active', 'energetic', '活躍']) else 'moderate',
'noise_sensitive': any(word in text for word in ['quiet', 'silent', '安靜']),
'experience_level': 'beginner' if any(word in text for word in ['first time', 'beginner', '新手']) else 'intermediate'
}
return analysis
def create_user_preferences_from_analysis_enhanced(self, analysis: Dict[str, Any]) -> 'UserPreferences':
"""從分析結果創建用戶偏好物件"""
context = analysis['user_context']
# 推斷居住空間類型
living_space = 'apartment' if context.get('living_space') == 'apartment' else 'house_small'
# 推斷院子權限
yard_access = 'no_yard' if living_space == 'apartment' else 'shared_yard'
# 推斷運動時間
activity_level = context.get('activity_level', 'moderate')
exercise_time_map = {'high': 120, 'moderate': 60, 'low': 30}
exercise_time = exercise_time_map.get(activity_level, 60)
# 推斷運動類型
exercise_type_map = {'high': 'active_training', 'moderate': 'moderate_activity', 'low': 'light_walks'}
exercise_type = exercise_type_map.get(activity_level, 'moderate_activity')
# 推斷噪音容忍度
noise_tolerance = 'low' if context.get('noise_sensitive', False) else 'medium'
return UserPreferences(
living_space=living_space,
yard_access=yard_access,
exercise_time=exercise_time,
exercise_type=exercise_type,
grooming_commitment='medium',
experience_level=context.get('experience_level', 'intermediate'),
time_availability='moderate',
has_children=context.get('has_children', False),
children_age='school_age' if context.get('has_children', False) else None,
noise_tolerance=noise_tolerance,
space_for_play=(living_space != 'apartment'),
other_pets=False,
climate='moderate',
health_sensitivity='medium',
barking_acceptance=noise_tolerance,
size_preference='no_preference'
)
def get_candidate_breeds_enhanced(self, analysis: Dict[str, Any]) -> List[str]:
"""獲取候選品種列表"""
candidate_breeds = set()
# 如果提及特定品種,優先包含
if analysis['mentioned_breeds']:
candidate_breeds.update(analysis['mentioned_breeds'])
# 根據約束要求過濾品種
if 'apartment_suitable' in analysis['constraint_requirements']:
apartment_suitable = [
'French_Bulldog', 'Cavalier_King_Charles_Spaniel', 'Boston_Terrier',
'Pug', 'Bichon_Frise', 'Cocker_Spaniel', 'Yorkshire_Terrier', 'Shih_Tzu'
]
candidate_breeds.update(breed for breed in apartment_suitable if breed in self.breed_list)
if 'child_friendly' in analysis['constraint_requirements']:
child_friendly = [
'Labrador_Retriever', 'Golden_Retriever', 'Beagle', 'Cavalier_King_Charles_Spaniel',
'Bichon_Frise', 'Poodle', 'Cocker_Spaniel'
]
candidate_breeds.update(breed for breed in child_friendly if breed in self.breed_list)
# 如果候選品種不足,添加更多通用品種
if len(candidate_breeds) < 20:
general_breeds = [
'Labrador_Retriever', 'German_Shepherd', 'Golden_Retriever', 'French_Bulldog',
'Bulldog', 'Poodle', 'Beagle', 'Rottweiler', 'Yorkshire_Terrier', 'Boston_Terrier',
'Border_Collie', 'Siberian_Husky', 'Cavalier_King_Charles_Spaniel', 'Boxer',
'Bichon_Frise', 'Cocker_Spaniel', 'Shih_Tzu', 'Pug', 'Chihuahua'
]
candidate_breeds.update(breed for breed in general_breeds if breed in self.breed_list)
return list(candidate_breeds)[:30] # 限制候選數量以提高效率
|