|
import functools |
|
import torch |
|
import torch.nn as nn |
|
from networks.base_model import BaseModel, init_weights |
|
import sys |
|
from models import get_model |
|
|
|
class Trainer(BaseModel): |
|
def name(self): |
|
return 'Trainer' |
|
|
|
def __init__(self, opt): |
|
super(Trainer, self).__init__(opt) |
|
self.opt = opt |
|
self.model = get_model(opt.arch) |
|
torch.nn.init.normal_(self.model.fc.weight.data, 0.0, opt.init_gain) |
|
|
|
if opt.fix_backbone: |
|
params = [] |
|
for name, p in self.model.named_parameters(): |
|
if name=="fc.weight" or name=="fc.bias": |
|
params.append(p) |
|
else: |
|
p.requires_grad = False |
|
else: |
|
print("Your backbone is not fixed. Are you sure you want to proceed? If this is a mistake, enable the --fix_backbone command during training and rerun") |
|
import time |
|
time.sleep(3) |
|
params = self.model.parameters() |
|
|
|
|
|
|
|
if opt.optim == 'adam': |
|
self.optimizer = torch.optim.AdamW(params, lr=opt.lr, betas=(opt.beta1, 0.999), weight_decay=opt.weight_decay) |
|
elif opt.optim == 'sgd': |
|
self.optimizer = torch.optim.SGD(params, lr=opt.lr, momentum=0.0, weight_decay=opt.weight_decay) |
|
else: |
|
raise ValueError("optim should be [adam, sgd]") |
|
|
|
self.loss_fn = nn.BCEWithLogitsLoss() |
|
|
|
self.model.to(opt.gpu_ids[0]) |
|
|
|
|
|
def adjust_learning_rate(self, min_lr=1e-6): |
|
for param_group in self.optimizer.param_groups: |
|
param_group['lr'] /= 10. |
|
if param_group['lr'] < min_lr: |
|
return False |
|
return True |
|
|
|
|
|
def set_input(self, input): |
|
self.input = input[0].to(self.device) |
|
self.label = input[1].to(self.device).float() |
|
|
|
|
|
def forward(self): |
|
self.output = self.model(self.input) |
|
self.output = self.output.view(-1).unsqueeze(1) |
|
|
|
|
|
def get_loss(self): |
|
return self.loss_fn(self.output.squeeze(1), self.label) |
|
|
|
def optimize_parameters(self): |
|
self.forward() |
|
self.loss = self.loss_fn(self.output.squeeze(1), self.label) |
|
self.optimizer.zero_grad() |
|
self.loss.backward() |
|
self.optimizer.step() |
|
|
|
|
|
|
|
|