|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch.nn as nn |
|
import torch.utils.model_zoo as model_zoo |
|
from .lpf import * |
|
|
|
__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', |
|
'resnet152', 'resnext50_32x4d', 'resnext101_32x8d'] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1, groups=1): |
|
"""3x3 convolution with padding""" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, |
|
padding=1, groups=groups, bias=False) |
|
|
|
def conv1x1(in_planes, out_planes, stride=1): |
|
"""1x1 convolution""" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) |
|
|
|
class BasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, norm_layer=None, filter_size=1): |
|
super(BasicBlock, self).__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
if groups != 1: |
|
raise ValueError('BasicBlock only supports groups=1') |
|
|
|
self.conv1 = conv3x3(inplanes, planes) |
|
self.bn1 = norm_layer(planes) |
|
self.relu = nn.ReLU(inplace=True) |
|
if(stride==1): |
|
self.conv2 = conv3x3(planes,planes) |
|
else: |
|
self.conv2 = nn.Sequential(Downsample(filt_size=filter_size, stride=stride, channels=planes), |
|
conv3x3(planes, planes),) |
|
self.bn2 = norm_layer(planes) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
expansion = 4 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, norm_layer=None, filter_size=1): |
|
super(Bottleneck, self).__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
|
|
self.conv1 = conv1x1(inplanes, planes) |
|
self.bn1 = norm_layer(planes) |
|
self.conv2 = conv3x3(planes, planes, groups) |
|
self.bn2 = norm_layer(planes) |
|
if(stride==1): |
|
self.conv3 = conv1x1(planes, planes * self.expansion) |
|
else: |
|
self.conv3 = nn.Sequential(Downsample(filt_size=filter_size, stride=stride, channels=planes), |
|
conv1x1(planes, planes * self.expansion)) |
|
self.bn3 = norm_layer(planes * self.expansion) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class ResNet(nn.Module): |
|
|
|
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False, |
|
groups=1, width_per_group=64, norm_layer=None, filter_size=1, pool_only=True): |
|
super(ResNet, self).__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
planes = [int(width_per_group * groups * 2 ** i) for i in range(4)] |
|
self.inplanes = planes[0] |
|
|
|
if(pool_only): |
|
self.conv1 = nn.Conv2d(3, planes[0], kernel_size=7, stride=2, padding=3, bias=False) |
|
else: |
|
self.conv1 = nn.Conv2d(3, planes[0], kernel_size=7, stride=1, padding=3, bias=False) |
|
self.bn1 = norm_layer(planes[0]) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
if(pool_only): |
|
self.maxpool = nn.Sequential(*[nn.MaxPool2d(kernel_size=2, stride=1), |
|
Downsample(filt_size=filter_size, stride=2, channels=planes[0])]) |
|
else: |
|
self.maxpool = nn.Sequential(*[Downsample(filt_size=filter_size, stride=2, channels=planes[0]), |
|
nn.MaxPool2d(kernel_size=2, stride=1), |
|
Downsample(filt_size=filter_size, stride=2, channels=planes[0])]) |
|
|
|
self.layer1 = self._make_layer(block, planes[0], layers[0], groups=groups, norm_layer=norm_layer) |
|
self.layer2 = self._make_layer(block, planes[1], layers[1], stride=2, groups=groups, norm_layer=norm_layer, filter_size=filter_size) |
|
self.layer3 = self._make_layer(block, planes[2], layers[2], stride=2, groups=groups, norm_layer=norm_layer, filter_size=filter_size) |
|
self.layer4 = self._make_layer(block, planes[3], layers[3], stride=2, groups=groups, norm_layer=norm_layer, filter_size=filter_size) |
|
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) |
|
self.fc = nn.Linear(planes[3] * block.expansion, num_classes) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
if(m.in_channels!=m.out_channels or m.out_channels!=m.groups or m.bias is not None): |
|
|
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') |
|
else: |
|
print('Not initializing') |
|
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
|
|
|
|
|
|
if zero_init_residual: |
|
for m in self.modules(): |
|
if isinstance(m, Bottleneck): |
|
nn.init.constant_(m.bn3.weight, 0) |
|
elif isinstance(m, BasicBlock): |
|
nn.init.constant_(m.bn2.weight, 0) |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1, groups=1, norm_layer=None, filter_size=1): |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
|
|
|
|
|
|
|
|
|
|
downsample = [Downsample(filt_size=filter_size, stride=stride, channels=self.inplanes),] if(stride !=1) else [] |
|
downsample += [conv1x1(self.inplanes, planes * block.expansion, 1), |
|
norm_layer(planes * block.expansion)] |
|
|
|
downsample = nn.Sequential(*downsample) |
|
|
|
layers = [] |
|
layers.append(block(self.inplanes, planes, stride, downsample, groups, norm_layer, filter_size=filter_size)) |
|
self.inplanes = planes * block.expansion |
|
for _ in range(1, blocks): |
|
layers.append(block(self.inplanes, planes, groups=groups, norm_layer=norm_layer, filter_size=filter_size)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
x = self.maxpool(x) |
|
|
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
|
|
x = self.avgpool(x) |
|
x = x.view(x.size(0), -1) |
|
x = self.fc(x) |
|
|
|
return x |
|
|
|
|
|
def resnet18(pretrained=False, filter_size=1, pool_only=True, **kwargs): |
|
"""Constructs a ResNet-18 model. |
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
""" |
|
model = ResNet(BasicBlock, [2, 2, 2, 2], filter_size=filter_size, pool_only=pool_only, **kwargs) |
|
if pretrained: |
|
model.load_state_dict(model_zoo.load_url(model_urls['resnet18'])) |
|
return model |
|
|
|
|
|
def resnet34(pretrained=False, filter_size=1, pool_only=True, **kwargs): |
|
"""Constructs a ResNet-34 model. |
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
""" |
|
model = ResNet(BasicBlock, [3, 4, 6, 3], filter_size=filter_size, pool_only=pool_only, **kwargs) |
|
if pretrained: |
|
model.load_state_dict(model_zoo.load_url(model_urls['resnet34'])) |
|
return model |
|
|
|
|
|
def resnet50(pretrained=False, filter_size=1, pool_only=True, **kwargs): |
|
"""Constructs a ResNet-50 model. |
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
""" |
|
model = ResNet(Bottleneck, [3, 4, 6, 3], filter_size=filter_size, pool_only=pool_only, **kwargs) |
|
if pretrained: |
|
model.load_state_dict(model_zoo.load_url(model_urls['resnet50'])) |
|
return model |
|
|
|
|
|
def resnet101(pretrained=False, filter_size=1, pool_only=True, **kwargs): |
|
"""Constructs a ResNet-101 model. |
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
""" |
|
model = ResNet(Bottleneck, [3, 4, 23, 3], filter_size=filter_size, pool_only=pool_only, **kwargs) |
|
if pretrained: |
|
model.load_state_dict(model_zoo.load_url(model_urls['resnet101'])) |
|
return model |
|
|
|
|
|
def resnet152(pretrained=False, filter_size=1, pool_only=True, **kwargs): |
|
"""Constructs a ResNet-152 model. |
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
""" |
|
model = ResNet(Bottleneck, [3, 8, 36, 3], filter_size=filter_size, pool_only=pool_only, **kwargs) |
|
if pretrained: |
|
model.load_state_dict(model_zoo.load_url(model_urls['resnet152'])) |
|
return model |
|
|
|
|
|
def resnext50_32x4d(pretrained=False, filter_size=1, pool_only=True, **kwargs): |
|
model = ResNet(Bottleneck, [3, 4, 6, 3], groups=4, width_per_group=32, filter_size=filter_size, pool_only=pool_only, **kwargs) |
|
|
|
|
|
return model |
|
|
|
|
|
def resnext101_32x8d(pretrained=False, filter_size=1, pool_only=True, **kwargs): |
|
model = ResNet(Bottleneck, [3, 4, 23, 3], groups=8, width_per_group=32, filter_size=filter_size, pool_only=pool_only, **kwargs) |
|
|
|
|
|
return model |
|
|