|
import os |
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import init |
|
from torch.optim import lr_scheduler |
|
|
|
|
|
class BaseModel(nn.Module): |
|
def __init__(self, opt): |
|
super(BaseModel, self).__init__() |
|
self.opt = opt |
|
self.total_steps = 0 |
|
self.save_dir = os.path.join(opt.checkpoints_dir, opt.name) |
|
self.device = torch.device('cuda:{}'.format(opt.gpu_ids[0])) if opt.gpu_ids else torch.device('cpu') |
|
|
|
def save_networks(self, save_filename): |
|
save_path = os.path.join(self.save_dir, save_filename) |
|
|
|
|
|
state_dict = { |
|
'model': self.model.state_dict(), |
|
'optimizer' : self.optimizer.state_dict(), |
|
'total_steps' : self.total_steps, |
|
} |
|
|
|
torch.save(state_dict, save_path) |
|
|
|
|
|
def eval(self): |
|
self.model.eval() |
|
|
|
def test(self): |
|
with torch.no_grad(): |
|
self.forward() |
|
|
|
|
|
def init_weights(net, init_type='normal', gain=0.02): |
|
def init_func(m): |
|
classname = m.__class__.__name__ |
|
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): |
|
if init_type == 'normal': |
|
init.normal_(m.weight.data, 0.0, gain) |
|
elif init_type == 'xavier': |
|
init.xavier_normal_(m.weight.data, gain=gain) |
|
elif init_type == 'kaiming': |
|
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') |
|
elif init_type == 'orthogonal': |
|
init.orthogonal_(m.weight.data, gain=gain) |
|
else: |
|
raise NotImplementedError('initialization method [%s] is not implemented' % init_type) |
|
if hasattr(m, 'bias') and m.bias is not None: |
|
init.constant_(m.bias.data, 0.0) |
|
elif classname.find('BatchNorm2d') != -1: |
|
init.normal_(m.weight.data, 1.0, gain) |
|
init.constant_(m.bias.data, 0.0) |
|
|
|
print('initialize network with %s' % init_type) |
|
net.apply(init_func) |
|
|