Maurizio Dipierro commited on
Commit
3ff8aa3
Β·
1 Parent(s): 2254c24

first trial

Browse files
Files changed (3) hide show
  1. Readme.md +107 -0
  2. app.py +305 -0
  3. requirements.txt +9 -0
Readme.md ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ML Prediction Dashboard
2
+
3
+ Una semplice applicazione Streamlit per esplorare le predizioni di un modello di machine learning, valutarne le performance e analizzare i singoli errori di classificazione.
4
+
5
+ > **Contenuto della cartella ZIP**
6
+ > ```
7
+ > β”œβ”€β”€ app.py # File principale dell'app Streamlit
8
+ > β”œβ”€β”€ requirements.txt # Elenco delle dipendenze Python
9
+ > └── README.md # Questo file di istruzioni
10
+ > ```
11
+
12
+ ## πŸ“¦ Dipendenze
13
+
14
+ Queste sono le librerie richieste dall'app, presenti nel file `requirements.txt`:
15
+
16
+ - streamlit>=1.25
17
+ - pandas
18
+ - numpy
19
+ - scikit-learn
20
+ - plotly
21
+ - seaborn
22
+ - matplotlib
23
+ - streamlit-aggrid
24
+ - openpyxl
25
+
26
+ ## πŸ“ Prerequisiti
27
+
28
+ - **Windows 10/11**
29
+ - **Accesso a Internet** (per scaricare Python e i pacchetti)
30
+
31
+ ## βš™οΈ Installazione di Python su Windows
32
+
33
+ 1. Vai al sito ufficiale di Python: https://www.python.org/downloads/windows/
34
+ 2. Clicca su **Download Python 3.x.x** (versione raccomandata).
35
+ 3. Esegui il file scaricato (`python-3.x.x-amd64.exe`).
36
+ 4. **IMPORTANTISSIMO**: nella prima finestra, **spunta** "Add Python 3.x to PATH" in basso.
37
+ 5. Clicca su **Install Now** e attendi il completamento.
38
+ 6. Apri il Prompt dei comandi (Win+R β†’ digita `cmd` β†’ Invio) e verifica:
39
+ ```bash
40
+ python --version
41
+ pip --version
42
+ ```
43
+ Dovresti vedere le versioni installate.
44
+
45
+ ## πŸ“¦ Installazione dell'applicazione
46
+
47
+ 1. Estrai la cartella ZIP in una directory a tua scelta.
48
+ 2. Apri il **Prompt dei comandi** e naviga nella cartella estratta:
49
+ ```bash
50
+ cd C:\percorso\alla\cartella
51
+ ```
52
+ 3. (Opzionale ma consigliato) Crea un **ambiente virtuale**:
53
+ ```bash
54
+ python -m venv venv
55
+ venv\Scripts\activate
56
+ ```
57
+ 4. Installa le dipendenze con pip:
58
+ ```bash
59
+ pip install -r requirements.txt
60
+ ```
61
+
62
+ ## πŸš€ Avvio dell'app Streamlit
63
+
64
+ Nella stessa cartella, esegui:
65
+
66
+ ```bash
67
+ streamlit run app.py
68
+ ```
69
+
70
+ Dopo qualche secondo, si aprirΓ  una finestra nel browser con l'interfaccia dell'app.
71
+
72
+ ## πŸŽ›οΈ Come usare l'app
73
+
74
+ 1. **Upload del file**: Carica un file `.csv` o `.xlsx` con almeno tre colonne:
75
+ - **ground_truth**: etichette reali
76
+ - **CASISTICA_MOTIVAZIONE**: etichette previste dal modello
77
+ - **PROBABILITA_ASSOCIAZIONE** (opzionale): confidenza delle predizioni
78
+ 2. **Mappatura colonne**: Se i nomi effettivi sono diversi, inseriscili nella sidebar.
79
+ 3. **Metriche globali**: Visualizzi Accuracy, Precisione, Recall e Macro-F1.
80
+ 4. **Distribuzione di confidenza** (se presente): Istogramma e threshold personalizzabile.
81
+ 5. **Matrice di confusione**: Heatmap con etichette orientate per leggibilitΓ .
82
+ 6. **Metrics per classe**: Tabella con precision, recall e F1-score per ogni classe.
83
+ 7. **Data Explorer (Ag-Grid)**:
84
+ - Filtri per etichette reali/predette e intervallo di confidenza.
85
+ - Colonne di testo (NOTE_OPERATORE) a capotesto con altezza automatica.
86
+ - Trascina le intestazioni per riordinare le colonne.
87
+ - Seleziona una riga per vedere dettagli e note dell'operatore.
88
+
89
+ ## ❓ FAQ
90
+
91
+ - **Il comando `pip` non viene riconosciuto?**
92
+ Assicurati di aver spuntato **Add Python to PATH** durante l'installazione.
93
+
94
+ - **Posso usare colonne con nomi personalizzati?**
95
+ Sì, basta scrivere i nomi reali nei campi di mappatura sulla sidebar.
96
+
97
+ - **Come cambio tema a Streamlit?**
98
+ Crea (o modifica) il file `%USERPROFILE%\\.streamlit\\config.toml` con:
99
+ ```toml
100
+ [theme]
101
+ base="light" # oppure "dark"
102
+ ```
103
+
104
+ ---
105
+
106
+ Buon lavoro! πŸš€
107
+
app.py ADDED
@@ -0,0 +1,305 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import numpy as np
4
+ import pandas as pd
5
+ import streamlit as st
6
+ from sklearn.metrics import (
7
+ accuracy_score,
8
+ classification_report,
9
+ confusion_matrix,
10
+ f1_score,
11
+ precision_score,
12
+ recall_score,
13
+ )
14
+
15
+ # External plotting libs
16
+ import matplotlib.pyplot as plt
17
+ import seaborn as sns
18
+ import plotly.express as px
19
+
20
+ # Ag-Grid for the data-explorer
21
+ from st_aggrid import AgGrid, GridOptionsBuilder
22
+
23
+ ###############################################################################
24
+ # ------------------------------ APP HELPERS --------------------------------
25
+ ###############################################################################
26
+
27
+
28
+ def _load_data(uploaded_file: st.runtime.uploaded_file_manager.UploadedFile | None) -> pd.DataFrame | None:
29
+ """Load XLSX or CSV into a DataFrame, or return *None* if not uploaded."""
30
+ if uploaded_file is None:
31
+ return None
32
+
33
+ file_name = uploaded_file.name.lower()
34
+ try:
35
+ if file_name.endswith((".xlsx", ".xls")):
36
+ return pd.read_excel(uploaded_file)
37
+ if file_name.endswith(".csv"):
38
+ return pd.read_csv(uploaded_file)
39
+ except Exception as exc: # pragma: no-cover
40
+ st.error(f"Could not read the uploaded file – {exc}")
41
+ return None
42
+
43
+ st.error("Unsupported file type. Please upload .xlsx or .csv.")
44
+ return None
45
+
46
+
47
+ def _compute_metrics(
48
+ df: pd.DataFrame,
49
+ y_true_col: str,
50
+ y_pred_col: str,
51
+ ):
52
+ """Return global metrics, class report & confusion matrix."""
53
+ y_true = df[y_true_col].astype(str).fillna("<NA>")
54
+ y_pred = df[y_pred_col].astype(str).fillna("<NA>")
55
+
56
+ acc = accuracy_score(y_true, y_pred)
57
+ prec = precision_score(y_true, y_pred, average="weighted", zero_division=0)
58
+ rec = recall_score(y_true, y_pred, average="weighted", zero_division=0)
59
+ f1 = f1_score(y_true, y_pred, average="macro", zero_division=0)
60
+
61
+ cls_report = classification_report(
62
+ y_true, y_pred, output_dict=True, zero_division=0
63
+ )
64
+ labels = sorted(y_true.unique().tolist())
65
+ conf_mat = confusion_matrix(y_true, y_pred, labels=labels)
66
+ return acc, prec, rec, f1, cls_report, conf_mat, labels
67
+
68
+
69
+ def _plot_confusion(conf_mat: np.ndarray, labels: list[str]):
70
+ """Return a seaborn heat-map figure with readable tick labels."""
71
+ # Dynamic sizing – wider for x-labels, taller for y-labels
72
+ fig_w = max(8, 0.4 * len(labels)) # width grows slowly
73
+ fig_h = max(6, 0.35 * len(labels)) # height a bit shorter
74
+
75
+ fig, ax = plt.subplots(figsize=(fig_w, fig_h))
76
+ sns.heatmap(
77
+ conf_mat,
78
+ annot=True,
79
+ fmt="d",
80
+ cmap="Blues",
81
+ xticklabels=labels,
82
+ yticklabels=labels,
83
+ ax=ax,
84
+ cbar_kws={"shrink": 0.85},
85
+ )
86
+
87
+ # Rotate & style tick labels for readability
88
+ ax.set_xticklabels(ax.get_xticklabels(), rotation=45, ha="right", fontsize=8)
89
+ ax.set_yticklabels(ax.get_yticklabels(), rotation=0, fontsize=8)
90
+
91
+ ax.set_xlabel("Predicted Label")
92
+ ax.set_ylabel("True Label")
93
+ ax.set_title("Confusion Matrix")
94
+ fig.tight_layout()
95
+ return fig
96
+
97
+ ###############################################################################
98
+ # --------------------------------- MAIN -----------------------------------
99
+ ###############################################################################
100
+
101
+
102
+ def main() -> None:
103
+ st.set_page_config(
104
+ page_title="ML Prediction Dashboard",
105
+ layout="wide",
106
+ page_icon="πŸ“Š",
107
+ initial_sidebar_state="expanded",
108
+ )
109
+
110
+ st.title("πŸ“Š Machine-Learning Prediction Dashboard")
111
+ st.write(
112
+ "Upload a predictions file and instantly explore model performance, "
113
+ "confidence behaviour and individual mis-classifications."
114
+ )
115
+
116
+ # ------------------------------------------------------------------
117
+ # Sidebar – file upload & column mapping
118
+ # ------------------------------------------------------------------
119
+ with st.sidebar:
120
+ st.header("1️⃣ Upload & Mapping")
121
+ uploaded_file = st.file_uploader(
122
+ "Upload .xlsx or .csv containing predictions", type=["xlsx", "xls", "csv"]
123
+ )
124
+ st.divider()
125
+ st.header("2️⃣ Column Mapping")
126
+ y_true_col = st.text_input("Ground-truth column", value="ground_truth")
127
+ y_pred_col = st.text_input("Predicted-label column", value="CASISTICA_MOTIVAZIONE")
128
+ prob_col = st.text_input(
129
+ "Probability / confidence column", value="PROBABILITA_ASSOCIAZIONE"
130
+ )
131
+
132
+ df = _load_data(uploaded_file)
133
+ if df is None:
134
+ st.info("πŸ‘ˆ Upload a file to start …")
135
+ st.stop()
136
+
137
+ # ------------------------------------------------------------------
138
+ # KPI Metrics
139
+ # ------------------------------------------------------------------
140
+ acc, prec, rec, f1, cls_report, conf_mat, labels = _compute_metrics(
141
+ df, y_true_col, y_pred_col
142
+ )
143
+
144
+ kpi_cols = st.columns(6)
145
+ kpi_cols[0].metric("Accuracy", f"{acc:.2%}")
146
+ kpi_cols[1].metric("Weighted Precision", f"{prec:.2%}")
147
+ kpi_cols[2].metric("Weighted Recall", f"{rec:.2%}")
148
+ kpi_cols[3].metric("Macro-F1", f"{f1:.2%}")
149
+ kpi_cols[4].metric("# Records", f"{len(df):,}")
150
+ kpi_cols[5].metric("# Classes", f"{df[y_true_col].nunique()}")
151
+
152
+ st.divider()
153
+
154
+ # ------------------------------------------------------------------
155
+ # Confidence distribution + threshold sweeper
156
+ # ------------------------------------------------------------------
157
+ st.subheader("Confidence Distribution")
158
+ if prob_col in df.columns:
159
+ fig_hist = px.histogram(
160
+ df,
161
+ x=prob_col,
162
+ nbins=40,
163
+ marginal="box",
164
+ title="Model confidence histogram",
165
+ labels={prob_col: "Confidence"},
166
+ height=350,
167
+ )
168
+ st.plotly_chart(fig_hist, use_container_width=True)
169
+
170
+ st.markdown("#### Threshold Sweeper")
171
+ thresh = st.slider("Probability threshold", 0.0, 1.0, 0.5, 0.01)
172
+ df_tmp = df.copy()
173
+ df_tmp["_adjusted_pred"] = np.where(
174
+ df_tmp[prob_col] >= thresh, df_tmp[y_pred_col].astype(str), "UNASSIGNED"
175
+ )
176
+ acc2, prec2, rec2, f12, *_ = _compute_metrics(df_tmp, y_true_col, "_adjusted_pred")
177
+ st.info(
178
+ f"**Metrics @ β‰₯ {thresh:.2f}** β€” "
179
+ f"Accuracy {acc2:.2%} β€’ Precision {prec2:.2%} β€’ "
180
+ f"Recall {rec2:.2%} β€’ Macro-F1 {f12:.2%}"
181
+ )
182
+ else:
183
+ st.warning("Selected probability column does not exist – skipping confidence plots.")
184
+
185
+ st.divider()
186
+
187
+ # ------------------------------------------------------------------
188
+ # Confusion matrix & class-wise report
189
+ # ------------------------------------------------------------------
190
+ st.subheader("Confusion Matrix")
191
+ fig_cm = _plot_confusion(conf_mat, labels)
192
+ st.pyplot(fig_cm, use_container_width=True)
193
+
194
+ st.subheader("Class-wise Metrics")
195
+ cls_df = (
196
+ pd.DataFrame(cls_report)
197
+ .T.reset_index()
198
+ .rename(columns={"index": "class"})
199
+ )
200
+ st.dataframe(cls_df, use_container_width=True)
201
+
202
+ st.divider()
203
+
204
+ # ------------------------------------------------------------------
205
+ # Data Explorer (AG-Grid) – with text wrapping & interactive reordering
206
+ # ------------------------------------------------------------------
207
+ st.subheader("Data Explorer")
208
+
209
+ # Filters
210
+ with st.expander("Filters", expanded=False):
211
+ sel_true = st.multiselect(
212
+ "Ground-truth labels ➟", sorted(df[y_true_col].unique()),
213
+ default=sorted(df[y_true_col].unique()),
214
+ )
215
+ sel_pred = st.multiselect(
216
+ "Predicted labels ➟", sorted(df[y_pred_col].unique()),
217
+ default=sorted(df[y_pred_col].unique()),
218
+ )
219
+ if prob_col in df.columns:
220
+ prob_rng = st.slider(
221
+ "Confidence range ➟", 0.0, 1.0, (0.0, 1.0), 0.01, key="prob_range"
222
+ )
223
+ else:
224
+ prob_rng = (0.0, 1.0)
225
+
226
+ # Apply filters
227
+ df_view = df[
228
+ df[y_true_col].isin(sel_true)
229
+ & df[y_pred_col].isin(sel_pred)
230
+ & (
231
+ (df[prob_col] >= prob_rng[0]) & (df[prob_col] <= prob_rng[1])
232
+ if prob_col in df.columns
233
+ else True
234
+ )
235
+ ].copy()
236
+
237
+ st.caption(f"Showing **{len(df_view):,}** rows after filtering.")
238
+
239
+ # Build AgGrid table with wrapping & movable columns
240
+ gb = GridOptionsBuilder.from_dataframe(df_view)
241
+ gb.configure_default_column(
242
+ editable=False,
243
+ filter=True,
244
+ sortable=True,
245
+ resizable=True,
246
+ wrapText=True,
247
+ autoHeight=True,
248
+ movable=True, # allow drag-and-drop
249
+ )
250
+ # Optional: give extra width to your free-text column
251
+ if "NOTE_OPERATORE" in df_view.columns:
252
+ gb.configure_column(
253
+ "NOTE_OPERATORE",
254
+ width=300,
255
+ minWidth=100,
256
+ maxWidth=600,
257
+ wrapText=True,
258
+ autoHeight=True,
259
+ )
260
+
261
+ gb.configure_selection("single", use_checkbox=True)
262
+ grid_opts = gb.build()
263
+ grid_opts["suppressMovableColumns"] = False
264
+
265
+ AgGrid(
266
+ df_view,
267
+ gridOptions=grid_opts,
268
+ enable_enterprise_modules=True,
269
+ height=400,
270
+ width="100%",
271
+ allow_unsafe_jscode=True,
272
+ update_mode="SELECTION_CHANGED",
273
+ )
274
+
275
+ # Selected-row details as before...
276
+ grid_resp = st.session_state.get("grid_response", None)
277
+ sel = grid_resp["selected_rows"] if grid_resp else []
278
+ if sel:
279
+ row = sel[0]
280
+ st.markdown("### Row Details")
281
+ with st.expander(f"Document #: {row.get('NUMERO_DOCUMENTO','N/A')}", expanded=True):
282
+ st.write("**Ground-truth:**", row.get(y_true_col))
283
+ st.write("**Predicted:**", row.get(y_pred_col))
284
+ if prob_col in row:
285
+ st.write("**Confidence:**", row.get(prob_col))
286
+ st.write("**Operator Notes:**")
287
+ st.write(row.get("NOTE_OPERATORE", "β€”"))
288
+
289
+ match_cols = [c for c in df.columns if c.startswith("MATCH") and not c.endswith("VALUE")]
290
+ if match_cols:
291
+ st.write("**Top Suggestions & Similarity**")
292
+ sim_df = pd.DataFrame(
293
+ {
294
+ "Suggestion": [row.get(c) for c in match_cols],
295
+ "Similarity": [
296
+ row.get(f"{c}_VALUE") if f"{c}_VALUE" in row else np.nan
297
+ for c in match_cols
298
+ ],
299
+ }
300
+ )
301
+ st.table(sim_df)
302
+
303
+
304
+ if __name__ == "__main__":
305
+ main()
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ streamlit>=1.25
2
+ pandas
3
+ numpy
4
+ scikit-learn
5
+ plotly
6
+ seaborn
7
+ matplotlib
8
+ streamlit-aggrid
9
+ openpyxl