Spaces:
No application file
No application file
Maurizio Dipierro
commited on
Commit
Β·
3ff8aa3
1
Parent(s):
2254c24
first trial
Browse files- Readme.md +107 -0
- app.py +305 -0
- requirements.txt +9 -0
Readme.md
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ML Prediction Dashboard
|
2 |
+
|
3 |
+
Una semplice applicazione Streamlit per esplorare le predizioni di un modello di machine learning, valutarne le performance e analizzare i singoli errori di classificazione.
|
4 |
+
|
5 |
+
> **Contenuto della cartella ZIP**
|
6 |
+
> ```
|
7 |
+
> βββ app.py # File principale dell'app Streamlit
|
8 |
+
> βββ requirements.txt # Elenco delle dipendenze Python
|
9 |
+
> βββ README.md # Questo file di istruzioni
|
10 |
+
> ```
|
11 |
+
|
12 |
+
## π¦ Dipendenze
|
13 |
+
|
14 |
+
Queste sono le librerie richieste dall'app, presenti nel file `requirements.txt`:
|
15 |
+
|
16 |
+
- streamlit>=1.25
|
17 |
+
- pandas
|
18 |
+
- numpy
|
19 |
+
- scikit-learn
|
20 |
+
- plotly
|
21 |
+
- seaborn
|
22 |
+
- matplotlib
|
23 |
+
- streamlit-aggrid
|
24 |
+
- openpyxl
|
25 |
+
|
26 |
+
## π Prerequisiti
|
27 |
+
|
28 |
+
- **Windows 10/11**
|
29 |
+
- **Accesso a Internet** (per scaricare Python e i pacchetti)
|
30 |
+
|
31 |
+
## βοΈ Installazione di Python su Windows
|
32 |
+
|
33 |
+
1. Vai al sito ufficiale di Python: https://www.python.org/downloads/windows/
|
34 |
+
2. Clicca su **Download Python 3.x.x** (versione raccomandata).
|
35 |
+
3. Esegui il file scaricato (`python-3.x.x-amd64.exe`).
|
36 |
+
4. **IMPORTANTISSIMO**: nella prima finestra, **spunta** "Add Python 3.x to PATH" in basso.
|
37 |
+
5. Clicca su **Install Now** e attendi il completamento.
|
38 |
+
6. Apri il Prompt dei comandi (Win+R β digita `cmd` β Invio) e verifica:
|
39 |
+
```bash
|
40 |
+
python --version
|
41 |
+
pip --version
|
42 |
+
```
|
43 |
+
Dovresti vedere le versioni installate.
|
44 |
+
|
45 |
+
## π¦ Installazione dell'applicazione
|
46 |
+
|
47 |
+
1. Estrai la cartella ZIP in una directory a tua scelta.
|
48 |
+
2. Apri il **Prompt dei comandi** e naviga nella cartella estratta:
|
49 |
+
```bash
|
50 |
+
cd C:\percorso\alla\cartella
|
51 |
+
```
|
52 |
+
3. (Opzionale ma consigliato) Crea un **ambiente virtuale**:
|
53 |
+
```bash
|
54 |
+
python -m venv venv
|
55 |
+
venv\Scripts\activate
|
56 |
+
```
|
57 |
+
4. Installa le dipendenze con pip:
|
58 |
+
```bash
|
59 |
+
pip install -r requirements.txt
|
60 |
+
```
|
61 |
+
|
62 |
+
## π Avvio dell'app Streamlit
|
63 |
+
|
64 |
+
Nella stessa cartella, esegui:
|
65 |
+
|
66 |
+
```bash
|
67 |
+
streamlit run app.py
|
68 |
+
```
|
69 |
+
|
70 |
+
Dopo qualche secondo, si aprirΓ una finestra nel browser con l'interfaccia dell'app.
|
71 |
+
|
72 |
+
## ποΈ Come usare l'app
|
73 |
+
|
74 |
+
1. **Upload del file**: Carica un file `.csv` o `.xlsx` con almeno tre colonne:
|
75 |
+
- **ground_truth**: etichette reali
|
76 |
+
- **CASISTICA_MOTIVAZIONE**: etichette previste dal modello
|
77 |
+
- **PROBABILITA_ASSOCIAZIONE** (opzionale): confidenza delle predizioni
|
78 |
+
2. **Mappatura colonne**: Se i nomi effettivi sono diversi, inseriscili nella sidebar.
|
79 |
+
3. **Metriche globali**: Visualizzi Accuracy, Precisione, Recall e Macro-F1.
|
80 |
+
4. **Distribuzione di confidenza** (se presente): Istogramma e threshold personalizzabile.
|
81 |
+
5. **Matrice di confusione**: Heatmap con etichette orientate per leggibilitΓ .
|
82 |
+
6. **Metrics per classe**: Tabella con precision, recall e F1-score per ogni classe.
|
83 |
+
7. **Data Explorer (Ag-Grid)**:
|
84 |
+
- Filtri per etichette reali/predette e intervallo di confidenza.
|
85 |
+
- Colonne di testo (NOTE_OPERATORE) a capotesto con altezza automatica.
|
86 |
+
- Trascina le intestazioni per riordinare le colonne.
|
87 |
+
- Seleziona una riga per vedere dettagli e note dell'operatore.
|
88 |
+
|
89 |
+
## β FAQ
|
90 |
+
|
91 |
+
- **Il comando `pip` non viene riconosciuto?**
|
92 |
+
Assicurati di aver spuntato **Add Python to PATH** durante l'installazione.
|
93 |
+
|
94 |
+
- **Posso usare colonne con nomi personalizzati?**
|
95 |
+
Sì, basta scrivere i nomi reali nei campi di mappatura sulla sidebar.
|
96 |
+
|
97 |
+
- **Come cambio tema a Streamlit?**
|
98 |
+
Crea (o modifica) il file `%USERPROFILE%\\.streamlit\\config.toml` con:
|
99 |
+
```toml
|
100 |
+
[theme]
|
101 |
+
base="light" # oppure "dark"
|
102 |
+
```
|
103 |
+
|
104 |
+
---
|
105 |
+
|
106 |
+
Buon lavoro! π
|
107 |
+
|
app.py
ADDED
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
import streamlit as st
|
6 |
+
from sklearn.metrics import (
|
7 |
+
accuracy_score,
|
8 |
+
classification_report,
|
9 |
+
confusion_matrix,
|
10 |
+
f1_score,
|
11 |
+
precision_score,
|
12 |
+
recall_score,
|
13 |
+
)
|
14 |
+
|
15 |
+
# External plotting libs
|
16 |
+
import matplotlib.pyplot as plt
|
17 |
+
import seaborn as sns
|
18 |
+
import plotly.express as px
|
19 |
+
|
20 |
+
# Ag-Grid for the data-explorer
|
21 |
+
from st_aggrid import AgGrid, GridOptionsBuilder
|
22 |
+
|
23 |
+
###############################################################################
|
24 |
+
# ------------------------------ APP HELPERS --------------------------------
|
25 |
+
###############################################################################
|
26 |
+
|
27 |
+
|
28 |
+
def _load_data(uploaded_file: st.runtime.uploaded_file_manager.UploadedFile | None) -> pd.DataFrame | None:
|
29 |
+
"""Load XLSX or CSV into a DataFrame, or return *None* if not uploaded."""
|
30 |
+
if uploaded_file is None:
|
31 |
+
return None
|
32 |
+
|
33 |
+
file_name = uploaded_file.name.lower()
|
34 |
+
try:
|
35 |
+
if file_name.endswith((".xlsx", ".xls")):
|
36 |
+
return pd.read_excel(uploaded_file)
|
37 |
+
if file_name.endswith(".csv"):
|
38 |
+
return pd.read_csv(uploaded_file)
|
39 |
+
except Exception as exc: # pragma: no-cover
|
40 |
+
st.error(f"Could not read the uploaded file β {exc}")
|
41 |
+
return None
|
42 |
+
|
43 |
+
st.error("Unsupported file type. Please upload .xlsx or .csv.")
|
44 |
+
return None
|
45 |
+
|
46 |
+
|
47 |
+
def _compute_metrics(
|
48 |
+
df: pd.DataFrame,
|
49 |
+
y_true_col: str,
|
50 |
+
y_pred_col: str,
|
51 |
+
):
|
52 |
+
"""Return global metrics, class report & confusion matrix."""
|
53 |
+
y_true = df[y_true_col].astype(str).fillna("<NA>")
|
54 |
+
y_pred = df[y_pred_col].astype(str).fillna("<NA>")
|
55 |
+
|
56 |
+
acc = accuracy_score(y_true, y_pred)
|
57 |
+
prec = precision_score(y_true, y_pred, average="weighted", zero_division=0)
|
58 |
+
rec = recall_score(y_true, y_pred, average="weighted", zero_division=0)
|
59 |
+
f1 = f1_score(y_true, y_pred, average="macro", zero_division=0)
|
60 |
+
|
61 |
+
cls_report = classification_report(
|
62 |
+
y_true, y_pred, output_dict=True, zero_division=0
|
63 |
+
)
|
64 |
+
labels = sorted(y_true.unique().tolist())
|
65 |
+
conf_mat = confusion_matrix(y_true, y_pred, labels=labels)
|
66 |
+
return acc, prec, rec, f1, cls_report, conf_mat, labels
|
67 |
+
|
68 |
+
|
69 |
+
def _plot_confusion(conf_mat: np.ndarray, labels: list[str]):
|
70 |
+
"""Return a seaborn heat-map figure with readable tick labels."""
|
71 |
+
# Dynamic sizing β wider for x-labels, taller for y-labels
|
72 |
+
fig_w = max(8, 0.4 * len(labels)) # width grows slowly
|
73 |
+
fig_h = max(6, 0.35 * len(labels)) # height a bit shorter
|
74 |
+
|
75 |
+
fig, ax = plt.subplots(figsize=(fig_w, fig_h))
|
76 |
+
sns.heatmap(
|
77 |
+
conf_mat,
|
78 |
+
annot=True,
|
79 |
+
fmt="d",
|
80 |
+
cmap="Blues",
|
81 |
+
xticklabels=labels,
|
82 |
+
yticklabels=labels,
|
83 |
+
ax=ax,
|
84 |
+
cbar_kws={"shrink": 0.85},
|
85 |
+
)
|
86 |
+
|
87 |
+
# Rotate & style tick labels for readability
|
88 |
+
ax.set_xticklabels(ax.get_xticklabels(), rotation=45, ha="right", fontsize=8)
|
89 |
+
ax.set_yticklabels(ax.get_yticklabels(), rotation=0, fontsize=8)
|
90 |
+
|
91 |
+
ax.set_xlabel("Predicted Label")
|
92 |
+
ax.set_ylabel("True Label")
|
93 |
+
ax.set_title("Confusion Matrix")
|
94 |
+
fig.tight_layout()
|
95 |
+
return fig
|
96 |
+
|
97 |
+
###############################################################################
|
98 |
+
# --------------------------------- MAIN -----------------------------------
|
99 |
+
###############################################################################
|
100 |
+
|
101 |
+
|
102 |
+
def main() -> None:
|
103 |
+
st.set_page_config(
|
104 |
+
page_title="ML Prediction Dashboard",
|
105 |
+
layout="wide",
|
106 |
+
page_icon="π",
|
107 |
+
initial_sidebar_state="expanded",
|
108 |
+
)
|
109 |
+
|
110 |
+
st.title("π Machine-Learning Prediction Dashboard")
|
111 |
+
st.write(
|
112 |
+
"Upload a predictions file and instantly explore model performance, "
|
113 |
+
"confidence behaviour and individual mis-classifications."
|
114 |
+
)
|
115 |
+
|
116 |
+
# ------------------------------------------------------------------
|
117 |
+
# Sidebar β file upload & column mapping
|
118 |
+
# ------------------------------------------------------------------
|
119 |
+
with st.sidebar:
|
120 |
+
st.header("1οΈβ£ Upload & Mapping")
|
121 |
+
uploaded_file = st.file_uploader(
|
122 |
+
"Upload .xlsx or .csv containing predictions", type=["xlsx", "xls", "csv"]
|
123 |
+
)
|
124 |
+
st.divider()
|
125 |
+
st.header("2οΈβ£ Column Mapping")
|
126 |
+
y_true_col = st.text_input("Ground-truth column", value="ground_truth")
|
127 |
+
y_pred_col = st.text_input("Predicted-label column", value="CASISTICA_MOTIVAZIONE")
|
128 |
+
prob_col = st.text_input(
|
129 |
+
"Probability / confidence column", value="PROBABILITA_ASSOCIAZIONE"
|
130 |
+
)
|
131 |
+
|
132 |
+
df = _load_data(uploaded_file)
|
133 |
+
if df is None:
|
134 |
+
st.info("π Upload a file to start β¦")
|
135 |
+
st.stop()
|
136 |
+
|
137 |
+
# ------------------------------------------------------------------
|
138 |
+
# KPI Metrics
|
139 |
+
# ------------------------------------------------------------------
|
140 |
+
acc, prec, rec, f1, cls_report, conf_mat, labels = _compute_metrics(
|
141 |
+
df, y_true_col, y_pred_col
|
142 |
+
)
|
143 |
+
|
144 |
+
kpi_cols = st.columns(6)
|
145 |
+
kpi_cols[0].metric("Accuracy", f"{acc:.2%}")
|
146 |
+
kpi_cols[1].metric("Weighted Precision", f"{prec:.2%}")
|
147 |
+
kpi_cols[2].metric("Weighted Recall", f"{rec:.2%}")
|
148 |
+
kpi_cols[3].metric("Macro-F1", f"{f1:.2%}")
|
149 |
+
kpi_cols[4].metric("# Records", f"{len(df):,}")
|
150 |
+
kpi_cols[5].metric("# Classes", f"{df[y_true_col].nunique()}")
|
151 |
+
|
152 |
+
st.divider()
|
153 |
+
|
154 |
+
# ------------------------------------------------------------------
|
155 |
+
# Confidence distribution + threshold sweeper
|
156 |
+
# ------------------------------------------------------------------
|
157 |
+
st.subheader("Confidence Distribution")
|
158 |
+
if prob_col in df.columns:
|
159 |
+
fig_hist = px.histogram(
|
160 |
+
df,
|
161 |
+
x=prob_col,
|
162 |
+
nbins=40,
|
163 |
+
marginal="box",
|
164 |
+
title="Model confidence histogram",
|
165 |
+
labels={prob_col: "Confidence"},
|
166 |
+
height=350,
|
167 |
+
)
|
168 |
+
st.plotly_chart(fig_hist, use_container_width=True)
|
169 |
+
|
170 |
+
st.markdown("#### Threshold Sweeper")
|
171 |
+
thresh = st.slider("Probability threshold", 0.0, 1.0, 0.5, 0.01)
|
172 |
+
df_tmp = df.copy()
|
173 |
+
df_tmp["_adjusted_pred"] = np.where(
|
174 |
+
df_tmp[prob_col] >= thresh, df_tmp[y_pred_col].astype(str), "UNASSIGNED"
|
175 |
+
)
|
176 |
+
acc2, prec2, rec2, f12, *_ = _compute_metrics(df_tmp, y_true_col, "_adjusted_pred")
|
177 |
+
st.info(
|
178 |
+
f"**Metrics @ β₯ {thresh:.2f}** β "
|
179 |
+
f"Accuracy {acc2:.2%} β’ Precision {prec2:.2%} β’ "
|
180 |
+
f"Recall {rec2:.2%} β’ Macro-F1 {f12:.2%}"
|
181 |
+
)
|
182 |
+
else:
|
183 |
+
st.warning("Selected probability column does not exist β skipping confidence plots.")
|
184 |
+
|
185 |
+
st.divider()
|
186 |
+
|
187 |
+
# ------------------------------------------------------------------
|
188 |
+
# Confusion matrix & class-wise report
|
189 |
+
# ------------------------------------------------------------------
|
190 |
+
st.subheader("Confusion Matrix")
|
191 |
+
fig_cm = _plot_confusion(conf_mat, labels)
|
192 |
+
st.pyplot(fig_cm, use_container_width=True)
|
193 |
+
|
194 |
+
st.subheader("Class-wise Metrics")
|
195 |
+
cls_df = (
|
196 |
+
pd.DataFrame(cls_report)
|
197 |
+
.T.reset_index()
|
198 |
+
.rename(columns={"index": "class"})
|
199 |
+
)
|
200 |
+
st.dataframe(cls_df, use_container_width=True)
|
201 |
+
|
202 |
+
st.divider()
|
203 |
+
|
204 |
+
# ------------------------------------------------------------------
|
205 |
+
# Data Explorer (AG-Grid) β with text wrapping & interactive reordering
|
206 |
+
# ------------------------------------------------------------------
|
207 |
+
st.subheader("Data Explorer")
|
208 |
+
|
209 |
+
# Filters
|
210 |
+
with st.expander("Filters", expanded=False):
|
211 |
+
sel_true = st.multiselect(
|
212 |
+
"Ground-truth labels β", sorted(df[y_true_col].unique()),
|
213 |
+
default=sorted(df[y_true_col].unique()),
|
214 |
+
)
|
215 |
+
sel_pred = st.multiselect(
|
216 |
+
"Predicted labels β", sorted(df[y_pred_col].unique()),
|
217 |
+
default=sorted(df[y_pred_col].unique()),
|
218 |
+
)
|
219 |
+
if prob_col in df.columns:
|
220 |
+
prob_rng = st.slider(
|
221 |
+
"Confidence range β", 0.0, 1.0, (0.0, 1.0), 0.01, key="prob_range"
|
222 |
+
)
|
223 |
+
else:
|
224 |
+
prob_rng = (0.0, 1.0)
|
225 |
+
|
226 |
+
# Apply filters
|
227 |
+
df_view = df[
|
228 |
+
df[y_true_col].isin(sel_true)
|
229 |
+
& df[y_pred_col].isin(sel_pred)
|
230 |
+
& (
|
231 |
+
(df[prob_col] >= prob_rng[0]) & (df[prob_col] <= prob_rng[1])
|
232 |
+
if prob_col in df.columns
|
233 |
+
else True
|
234 |
+
)
|
235 |
+
].copy()
|
236 |
+
|
237 |
+
st.caption(f"Showing **{len(df_view):,}** rows after filtering.")
|
238 |
+
|
239 |
+
# Build AgGrid table with wrapping & movable columns
|
240 |
+
gb = GridOptionsBuilder.from_dataframe(df_view)
|
241 |
+
gb.configure_default_column(
|
242 |
+
editable=False,
|
243 |
+
filter=True,
|
244 |
+
sortable=True,
|
245 |
+
resizable=True,
|
246 |
+
wrapText=True,
|
247 |
+
autoHeight=True,
|
248 |
+
movable=True, # allow drag-and-drop
|
249 |
+
)
|
250 |
+
# Optional: give extra width to your free-text column
|
251 |
+
if "NOTE_OPERATORE" in df_view.columns:
|
252 |
+
gb.configure_column(
|
253 |
+
"NOTE_OPERATORE",
|
254 |
+
width=300,
|
255 |
+
minWidth=100,
|
256 |
+
maxWidth=600,
|
257 |
+
wrapText=True,
|
258 |
+
autoHeight=True,
|
259 |
+
)
|
260 |
+
|
261 |
+
gb.configure_selection("single", use_checkbox=True)
|
262 |
+
grid_opts = gb.build()
|
263 |
+
grid_opts["suppressMovableColumns"] = False
|
264 |
+
|
265 |
+
AgGrid(
|
266 |
+
df_view,
|
267 |
+
gridOptions=grid_opts,
|
268 |
+
enable_enterprise_modules=True,
|
269 |
+
height=400,
|
270 |
+
width="100%",
|
271 |
+
allow_unsafe_jscode=True,
|
272 |
+
update_mode="SELECTION_CHANGED",
|
273 |
+
)
|
274 |
+
|
275 |
+
# Selected-row details as before...
|
276 |
+
grid_resp = st.session_state.get("grid_response", None)
|
277 |
+
sel = grid_resp["selected_rows"] if grid_resp else []
|
278 |
+
if sel:
|
279 |
+
row = sel[0]
|
280 |
+
st.markdown("### Row Details")
|
281 |
+
with st.expander(f"Document #: {row.get('NUMERO_DOCUMENTO','N/A')}", expanded=True):
|
282 |
+
st.write("**Ground-truth:**", row.get(y_true_col))
|
283 |
+
st.write("**Predicted:**", row.get(y_pred_col))
|
284 |
+
if prob_col in row:
|
285 |
+
st.write("**Confidence:**", row.get(prob_col))
|
286 |
+
st.write("**Operator Notes:**")
|
287 |
+
st.write(row.get("NOTE_OPERATORE", "β"))
|
288 |
+
|
289 |
+
match_cols = [c for c in df.columns if c.startswith("MATCH") and not c.endswith("VALUE")]
|
290 |
+
if match_cols:
|
291 |
+
st.write("**Top Suggestions & Similarity**")
|
292 |
+
sim_df = pd.DataFrame(
|
293 |
+
{
|
294 |
+
"Suggestion": [row.get(c) for c in match_cols],
|
295 |
+
"Similarity": [
|
296 |
+
row.get(f"{c}_VALUE") if f"{c}_VALUE" in row else np.nan
|
297 |
+
for c in match_cols
|
298 |
+
],
|
299 |
+
}
|
300 |
+
)
|
301 |
+
st.table(sim_df)
|
302 |
+
|
303 |
+
|
304 |
+
if __name__ == "__main__":
|
305 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit>=1.25
|
2 |
+
pandas
|
3 |
+
numpy
|
4 |
+
scikit-learn
|
5 |
+
plotly
|
6 |
+
seaborn
|
7 |
+
matplotlib
|
8 |
+
streamlit-aggrid
|
9 |
+
openpyxl
|