TinyRP-Demo / app.py
DarwinAnim8or's picture
Update app.py
b88f866 verified
raw
history blame
12.8 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Model configuration - change this to your model path
MODEL_NAME = "DarwinAnim8or/TinyRP"
# Initialize model and tokenizer for CPU inference
print("Loading model for CPU inference...")
try:
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
torch_dtype=torch.float32, # Use float32 for CPU
device_map="cpu",
trust_remote_code=True
)
print(f"βœ… Model loaded successfully on CPU: {MODEL_NAME}")
except Exception as e:
print(f"❌ Error loading model: {e}")
tokenizer = None
model = None
# Sample character presets
SAMPLE_CHARACTERS = {
"Custom Character": "",
"Adventurous Knight": "You are Sir Gareth, a brave and noble knight on a quest to save the kingdom. You speak with honor and courage, always ready to help those in need. You carry an enchanted sword and have a loyal horse named Thunder.",
"Mysterious Wizard": "You are Eldara, an ancient and wise wizard who speaks in riddles and knows secrets of the mystical arts. You live in a tower filled with magical books and potions. You are helpful but often cryptic in your responses.",
"Friendly Tavern Keeper": "You are Bram, a cheerful tavern keeper who loves telling stories and meeting new travelers. Your tavern 'The Dancing Dragon' is a warm, welcoming place. You know all the local gossip and always have a tale to share.",
"Curious Scientist": "You are Dr. Maya Chen, a brilliant scientist who is fascinated by discovery and invention. You're enthusiastic about explaining complex concepts in simple ways and always looking for new experiments to try.",
"Space Explorer": "You are Captain Nova, a fearless space explorer who has traveled to distant galaxies. You pilot the starship 'Wanderer' and have encountered many alien species. You're brave, curious, and always ready for the next adventure.",
"Fantasy Princess": "You are Princess Lyra, kind-hearted royalty who cares deeply about her people. You're intelligent, diplomatic, and skilled in both politics and magic. You often sneak out of the castle to help citizens in need."
}
def build_chatml_conversation(message, history, character_description):
"""Build a conversation in ChatML format"""
conversation = ""
# Add system message if character is defined
if character_description.strip():
conversation += f"<|im_start|>system\n{character_description.strip()}<|im_end|>\n"
# Add conversation history
for user_msg, assistant_msg in history:
if user_msg:
conversation += f"<|im_start|>user\n{user_msg}<|im_end|>\n"
if assistant_msg:
conversation += f"<|im_start|>assistant\n{assistant_msg}<|im_end|>\n"
# Add current user message
conversation += f"<|im_start|>user\n{message}<|im_end|>\n"
# Start assistant response
conversation += "<|im_start|>assistant\n"
return conversation
def generate_cpu_response(message, history, character_description, max_tokens, temperature, top_p, repetition_penalty):
"""Generate response using local CPU inference with ChatML format"""
if model is None or tokenizer is None:
return "❌ Error: Model not loaded properly. Please check the model path."
if not message.strip():
return "Please enter a message."
try:
# Build ChatML conversation
conversation = build_chatml_conversation(message, history, character_description)
# Tokenize the conversation
inputs = tokenizer.encode(
conversation,
return_tensors="pt",
truncation=True,
max_length=1024 - max_tokens # Leave room for response
)
print(f"πŸ”„ Generating response... (Input length: {inputs.shape[1]} tokens)")
# Generate response on CPU
with torch.no_grad():
outputs = model.generate(
inputs,
max_new_tokens=int(max_tokens),
temperature=float(temperature),
top_p=float(top_p),
repetition_penalty=float(repetition_penalty),
do_sample=True,
pad_token_id=tokenizer.pad_token_id if tokenizer.pad_token_id else tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id,
use_cache=True,
num_return_sequences=1
)
# Decode the full response
full_response = tokenizer.decode(outputs[0], skip_special_tokens=False)
# Extract just the assistant's response from ChatML format
if "<|im_start|>assistant\n" in full_response:
# Split on the last assistant tag to get only the new response
assistant_parts = full_response.split("<|im_start|>assistant\n")
if len(assistant_parts) > 1:
response = assistant_parts[-1]
# Remove any trailing <|im_end|> or other tokens
response = response.replace("<|im_end|>", "").strip()
# Clean up any remaining special tokens
response = response.replace("<|im_start|>", "").replace("<|im_end|>", "")
response = response.replace("<s>", "").replace("</s>", "")
response = response.strip()
if response:
print(f"βœ… Generated {len(response)} characters")
return response
# Fallback: try to extract response after the input
input_text = tokenizer.decode(inputs[0], skip_special_tokens=False)
if len(full_response) > len(input_text):
response = full_response[len(input_text):].strip()
# Clean special tokens
response = response.replace("<|im_start|>", "").replace("<|im_end|>", "")
response = response.replace("<s>", "").replace("</s>", "")
response = response.strip()
if response:
return response
return "Sorry, I couldn't generate a proper response. Please try again."
except Exception as e:
print(f"❌ Generation error: {e}")
return f"Error generating response: {str(e)}"
def load_character_preset(character_name):
"""Load a character preset description"""
return SAMPLE_CHARACTERS.get(character_name, "")
def chat_function(message, history, character_description, max_tokens, temperature, top_p, repetition_penalty):
"""Main chat function that handles the conversation flow"""
if not message.strip():
return history, ""
# Generate response using CPU inference
response = generate_cpu_response(
message,
history,
character_description,
max_tokens,
temperature,
top_p,
repetition_penalty
)
# Add to history
history.append([message, response])
return history, ""
# Custom CSS for better styling
css = """
.character-card {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
border-radius: 15px;
padding: 20px;
margin: 10px 0;
color: white;
}
.title-text {
text-align: center;
font-size: 2.5em;
font-weight: bold;
background: linear-gradient(45deg, #667eea, #764ba2);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
margin-bottom: 20px;
}
.parameter-box {
background: #f8f9fa;
border-radius: 10px;
padding: 15px;
margin: 10px 0;
}
.cpu-badge {
background: #28a745;
color: white;
padding: 5px 10px;
border-radius: 15px;
font-size: 0.8em;
margin-left: 10px;
}
"""
# Create the Gradio interface
with gr.Blocks(css=css, title="TinyRP Chat Demo") as demo:
gr.HTML('<div class="title-text">🎭 TinyRP Character Chat <span class="cpu-badge">CPU Inference</span></div>')
gr.Markdown("""
### Welcome to TinyRP!
This is a demo of a small but capable roleplay model running on CPU. Choose a character preset or create your own!
**Tips for better roleplay:**
- Be descriptive in your messages
- Stay in character
- Uses ChatML format for best results
- Adjust temperature for creativity vs consistency
⚑ **Running on CPU** - Responses may take 10-30 seconds depending on your hardware.
""")
with gr.Row():
with gr.Column(scale=2):
# Chat interface
chatbot = gr.Chatbot(
label="Chat",
height=500,
show_label=False,
avatar_images=("πŸ§‘", "🎭")
)
with gr.Row():
msg = gr.Textbox(
label="Your message",
placeholder="Type your message here...",
lines=2,
scale=4
)
send_btn = gr.Button("Send", variant="primary", scale=1)
with gr.Column(scale=1):
# Character selection
with gr.Group():
gr.Markdown("### 🎭 Character Setup")
character_preset = gr.Dropdown(
choices=list(SAMPLE_CHARACTERS.keys()),
value="Custom Character",
label="Character Presets",
interactive=True
)
character_description = gr.Textbox(
label="Character Description",
placeholder="Describe your character's personality, background, and speaking style...",
lines=6,
value=""
)
load_preset_btn = gr.Button("Load Preset", variant="secondary")
# Generation parameters
with gr.Group():
gr.Markdown("### βš™οΈ Generation Settings")
gr.Markdown("*Using ChatML format automatically*")
max_tokens = gr.Slider(
minimum=16,
maximum=256,
value=100,
step=16,
label="Max Response Length",
info="Longer = more detailed responses (slower on CPU)"
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.9,
step=0.1,
label="Temperature",
info="Higher = more creative/random"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.85,
step=0.05,
label="Top-p",
info="Focus on top % of likely words"
)
repetition_penalty = gr.Slider(
minimum=1.0,
maximum=1.5,
value=1.1,
step=0.05,
label="Repetition Penalty",
info="Reduce repetitive text"
)
# Control buttons
with gr.Group():
clear_btn = gr.Button("πŸ—‘οΈ Clear Chat", variant="secondary")
# Sample character cards
with gr.Row():
gr.Markdown("### 🌟 Featured Characters")
with gr.Row():
for char_name, char_desc in list(SAMPLE_CHARACTERS.items())[1:4]: # Show first 3 non-custom
with gr.Column(scale=1):
gr.Markdown(f"""
<div class="character-card">
<h4>{char_name}</h4>
<p>{char_desc[:100]}...</p>
</div>
""")
# Event handlers
send_btn.click(
chat_function,
inputs=[msg, chatbot, character_description, max_tokens, temperature, top_p, repetition_penalty],
outputs=[chatbot, msg]
)
msg.submit(
chat_function,
inputs=[msg, chatbot, character_description, max_tokens, temperature, top_p, repetition_penalty],
outputs=[chatbot, msg]
)
load_preset_btn.click(
load_character_preset,
inputs=[character_preset],
outputs=[character_description]
)
character_preset.change(
load_character_preset,
inputs=[character_preset],
outputs=[character_description]
)
clear_btn.click(lambda: ([], ""), outputs=[chatbot, msg])
if __name__ == "__main__":
demo.launch()