Spaces:
Sleeping
Sleeping
File size: 8,802 Bytes
30b652f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import gradio as gr
import numpy as np
import scipy.sparse as sparse
import time
import os
import shutil
import math
import sys
from pathlib import Path
# Assuming flex_chunk.py and matrix_multiply.py are in the same directory
from flex_chunk import FlexChunk, save_chunk, load_chunk
from matrix_multiply import prepare_chunks, load_chunks, matrix_vector_multiply
# --- Matrix Generation (copied from test_vs_scipy.py) ---
def generate_sparse_matrix(size, density, challenging=False):
"""
Generate a sparse test matrix with optional challenging patterns.
Args:
size: Matrix size (n x n)
density: Target density
challenging: Whether to include challenging patterns and extreme values
Returns:
A scipy.sparse.csr_matrix
"""
# Calculate number of non-zeros
nnz = int(size * size * density)
if nnz == 0: # Ensure at least one non-zero element if density is very low
nnz = 1
if not challenging:
# Simple random matrix
rows = np.random.randint(0, size, nnz)
cols = np.random.randint(0, size, nnz)
data = np.random.rand(nnz)
# Ensure the matrix actually has the specified size if nnz is small
if nnz < size:
# Add diagonal elements to ensure size
diag_indices = np.arange(min(nnz, size))
rows = np.concatenate([rows, diag_indices])
cols = np.concatenate([cols, diag_indices])
data = np.concatenate([data, np.ones(len(diag_indices))]) # Use 1 for diagonal
matrix = sparse.csr_matrix((data, (rows, cols)), shape=(size, size))
matrix.sum_duplicates() # Consolidate duplicate entries
return matrix
# --- Challenging matrix with specific patterns ---
# Base random matrix (80% of non-zeros)
base_nnz = int(nnz * 0.8)
rows = np.random.randint(0, size, base_nnz)
cols = np.random.randint(0, size, base_nnz)
data = np.random.rand(base_nnz)
# Add diagonal elements (10% of non-zeros)
diag_nnz = int(nnz * 0.1)
diag_indices = np.random.choice(size, diag_nnz, replace=False)
# Add extreme values (10% of non-zeros)
extreme_nnz = max(0, nnz - base_nnz - diag_nnz) # Ensure non-negative
extreme_rows = np.random.randint(0, size, extreme_nnz)
extreme_cols = np.random.randint(0, size, extreme_nnz)
# Mix of very large and very small values
extreme_data = np.concatenate([
np.random.uniform(1e6, 1e9, extreme_nnz // 2),
np.random.uniform(1e-9, 1e-6, extreme_nnz - extreme_nnz // 2)
]) if extreme_nnz > 0 else np.array([])
if extreme_nnz > 0:
np.random.shuffle(extreme_data)
# Combine all components
all_rows = np.concatenate([rows, diag_indices, extreme_rows])
all_cols = np.concatenate([cols, diag_indices, extreme_cols])
all_data = np.concatenate([data, np.random.rand(diag_nnz), extreme_data])
matrix = sparse.csr_matrix((all_data, (all_rows, all_cols)), shape=(size, size))
matrix.sum_duplicates() # Consolidate duplicate entries
return matrix
# --- Benchmark Function (Placeholder) ---
def run_benchmark(size, density, num_chunks, challenging, progress=gr.Progress()):
# This function will contain the main logic from test_vs_scipy.py
# Adapted for Gradio inputs and outputs
progress(0, desc="Starting Benchmark...")
time.sleep(1) # Placeholder
# 1. Setup storage
storage_dir = Path("./flex_chunk_temp_space")
if storage_dir.exists():
shutil.rmtree(storage_dir)
storage_dir.mkdir(exist_ok=True)
progress(0.1, desc="Generating Matrix...")
# 2. Generate matrix and vector
matrix = generate_sparse_matrix(size, density, challenging)
vector = np.random.rand(size)
actual_nnz = matrix.nnz
actual_density = actual_nnz / (size * size) if size > 0 else 0
matrix_info = f"Matrix: {size}x{size}, Target Density: {density:.6f}, Actual Density: {actual_density:.6f}, NNZ: {actual_nnz}"
print(matrix_info) # For debugging in Hugging Face console
# --- FlexChunk Run ---
progress(0.2, desc="Preparing FlexChunks...")
prepare_start = time.time()
prepare_chunks(matrix, num_chunks, str(storage_dir), verbose=False)
prepare_time = time.time() - prepare_start
progress(0.4, desc="Loading FlexChunks...")
load_start = time.time()
chunks = load_chunks(str(storage_dir), verbose=False)
load_time = time.time() - load_start
progress(0.6, desc="Running FlexChunk SpMV...")
flex_compute_start = time.time()
flex_result = matrix_vector_multiply(chunks, vector, verbose=False)
flex_compute_time = time.time() - flex_compute_start
flex_total_time = load_time + flex_compute_time
# --- SciPy Run ---
progress(0.7, desc="Saving SciPy data...")
scipy_temp_dir = storage_dir / "scipy_temp"
scipy_temp_dir.mkdir(exist_ok=True)
matrix_file = scipy_temp_dir / "matrix.npz"
vector_file = scipy_temp_dir / "vector.npy"
scipy_save_start = time.time()
sparse.save_npz(matrix_file, matrix)
np.save(vector_file, vector)
scipy_save_time = time.time() - scipy_save_start
progress(0.8, desc="Loading SciPy data...")
scipy_load_start = time.time()
loaded_matrix = sparse.load_npz(matrix_file)
loaded_vector = np.load(vector_file)
scipy_load_time = time.time() - scipy_load_start
progress(0.9, desc="Running SciPy SpMV...")
scipy_compute_start = time.time()
scipy_result = loaded_matrix @ loaded_vector
scipy_compute_time = time.time() - scipy_compute_start
scipy_total_time = scipy_load_time + scipy_compute_time
# --- Comparison ---
progress(0.95, desc="Comparing results...")
diff = np.abs(scipy_result - flex_result)
max_diff = np.max(diff) if len(diff) > 0 else 0
mean_diff = np.mean(diff) if len(diff) > 0 else 0
is_close = np.allclose(scipy_result, flex_result, atol=1e-9) # Increased tolerance slightly
comparison_result = f"✅ Results Match! (Max Diff: {max_diff:.2e}, Mean Diff: {mean_diff:.2e})" if is_close else f"❌ Results Differ! (Max Diff: {max_diff:.2e}, Mean Diff: {mean_diff:.2e})"
# --- Cleanup ---
shutil.rmtree(storage_dir)
progress(1.0, desc="Benchmark Complete")
# --- Format Output ---
results_summary = f"""
{matrix_info}
**FlexChunk Performance:**
- Prepare Chunks Time: {prepare_time:.4f}s
- Load Chunks Time: {load_time:.4f}s
- Compute Time: {flex_compute_time:.4f}s
- **Total (Load+Compute): {flex_total_time:.4f}s**
**SciPy Performance (Out-of-Core Emulation):**
- Save Data Time: {scipy_save_time:.4f}s (For reference)
- Load Data Time: {scipy_load_time:.4f}s
- Compute Time: {scipy_compute_time:.4f}s
- **Total (Load+Compute): {scipy_total_time:.4f}s**
**Comparison:**
{comparison_result}
"""
return results_summary
# --- Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("""
# FlexChunk: Out-of-Core Sparse Matrix-Vector Multiplication (SpMV) Demo
This demo compares the performance of FlexChunk against standard SciPy for SpMV,
simulating an out-of-core scenario where the matrix doesn't fit entirely in memory.
FlexChunk splits the matrix into smaller chunks, processing them sequentially to reduce peak memory usage.
SciPy performance includes the time to save and load the matrix from disk to mimic this out-of-core access.
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("**Benchmark Parameters**")
size_input = gr.Slider(label="Matrix Size (N x N)", minimum=100, maximum=50000, value=10000, step=100)
# Max density adjusted to prevent excessive nnz for large matrices in demo
density_input = gr.Slider(label="Matrix Density", minimum=0.00001, maximum=0.01, value=0.0001, step=0.00001, format="%.5f")
chunks_input = gr.Slider(label="Number of Chunks", minimum=1, maximum=32, value=4, step=1)
challenging_input = gr.Checkbox(label="Use Challenging Matrix (Extreme Values)", value=False)
run_button = gr.Button("Run Benchmark", variant="primary")
with gr.Column(scale=2):
gr.Markdown("**Results**")
output_textbox = gr.Markdown(label="Benchmark Summary")
run_button.click(
fn=run_benchmark,
inputs=[size_input, density_input, chunks_input, challenging_input],
outputs=[output_textbox]
)
gr.Markdown("--- Developed based on the [FlexChunk concept](https://www.lesswrong.com/posts/zpRhsdDkWygTDScxb/flexchunk-enabling-100m-100m-out-of-core-spmv-1-8-min-1-7-gb).")
# Launch the app
if __name__ == "__main__":
demo.launch() |