import gradio as gr from llama_cpp import Llama # Load the model (only once) llm = Llama.from_pretrained( repo_id="google/gemma-3-1b-it-qat-q4_0-gguf", filename="gemma-3-1b-it-q4_0.gguf", n_ctx=32768, verbose=False # Mute llama.cpp logs ) # Define the function that runs the model def chat_with_gemma(user_input, temperature, top_p, frequency_penalty, presence_penalty): full_prompt = f"{user_input}\nAnswer in no more than 150 words." response = llm.create_chat_completion( messages=[{"role": "user", "content": full_prompt}], max_tokens=200, temperature=temperature, top_p=top_p, frequency_penalty=frequency_penalty, presence_penalty=presence_penalty ) return response["choices"][0]["message"]["content"].strip() # Set up the Gradio interface demo = gr.Interface( fn=chat_with_gemma, inputs=[ gr.Textbox(label="Enter your message to Gemma"), gr.Slider(0.0, 1.5, value=0.7, step=0.05, label="Temperature"), gr.Slider(0.0, 1.0, value=0.9, step=0.05, label="Top-p (Nucleus Sampling)"), gr.Slider(0.0, 2.0, value=0.4, step=0.1, label="Frequency Penalty"), gr.Slider(0.0, 2.0, value=0.2, step=0.1, label="Presence Penalty") ], outputs=gr.Textbox(label="Gemma's Response", lines=8), title="Talk to Gemma", description="Generate short responses using Google's Gemma model with adjustable settings." ) # Launch the app demo.launch(share=True, enable_api=False) #demo.launch(auth=("username", "password")) #enable the above and remove the current demo.launch settings to enable api useage, but enable a password and username to prevent someone form using your api. Currently set to default username 'username' and default password 'password'.