Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,46 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
-
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
messages,
|
32 |
-
max_tokens=
|
33 |
-
stream=True,
|
34 |
temperature=temperature,
|
35 |
top_p=top_p,
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
gr.
|
50 |
-
gr.Slider(
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
|
|
|
|
|
|
60 |
)
|
61 |
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
from llama_cpp import Llama
|
3 |
+
|
4 |
+
# Load the model (only once)
|
5 |
+
llm = Llama.from_pretrained(
|
6 |
+
repo_id="google/gemma-3-1b-it-qat-q4_0-gguf",
|
7 |
+
filename="gemma-3-1b-it-q4_0.gguf",
|
8 |
+
n_ctx=32768,
|
9 |
+
verbose=False # Mute llama.cpp logs
|
10 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# Define the function that runs the model
|
13 |
+
def chat_with_gemma(user_input, temperature, top_p, frequency_penalty, presence_penalty):
|
14 |
+
full_prompt = f"{user_input}\nAnswer in no more than 150 words."
|
15 |
|
16 |
+
response = llm.create_chat_completion(
|
17 |
+
messages=[{"role": "user", "content": full_prompt}],
|
18 |
+
max_tokens=200,
|
|
|
19 |
temperature=temperature,
|
20 |
top_p=top_p,
|
21 |
+
frequency_penalty=frequency_penalty,
|
22 |
+
presence_penalty=presence_penalty
|
23 |
+
)
|
24 |
+
|
25 |
+
return response["choices"][0]["message"]["content"].strip()
|
26 |
+
|
27 |
+
# Set up the Gradio interface
|
28 |
+
demo = gr.Interface(
|
29 |
+
fn=chat_with_gemma,
|
30 |
+
inputs=[
|
31 |
+
gr.Textbox(label="Enter your message to Gemma"),
|
32 |
+
gr.Slider(0.0, 1.5, value=0.7, step=0.05, label="Temperature"),
|
33 |
+
gr.Slider(0.0, 1.0, value=0.9, step=0.05, label="Top-p (Nucleus Sampling)"),
|
34 |
+
gr.Slider(0.0, 2.0, value=0.4, step=0.1, label="Frequency Penalty"),
|
35 |
+
gr.Slider(0.0, 2.0, value=0.2, step=0.1, label="Presence Penalty")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
],
|
37 |
+
outputs=gr.Textbox(label="Gemma's Response", lines=8),
|
38 |
+
title="Talk to Gemma",
|
39 |
+
description="Generate short responses using Google's Gemma model with adjustable settings."
|
40 |
)
|
41 |
|
42 |
+
# Launch the app
|
43 |
+
demo.launch(share=True, enable_api=False)
|
44 |
|
45 |
+
#demo.launch(auth=("username", "password"))
|
46 |
+
#enable the above and remove the current demo.launch settings to enable api useage, but enable a password and username to prevent someone form using your api. Currently set to default username 'username' and default password 'password'.
|