Dagriffpatchfan commited on
Commit
145e38d
·
verified ·
1 Parent(s): 3b9e51a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -55
app.py CHANGED
@@ -1,64 +1,46 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
 
28
- response = ""
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
  temperature=temperature,
35
  top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
 
60
  )
61
 
 
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from llama_cpp import Llama
3
+
4
+ # Load the model (only once)
5
+ llm = Llama.from_pretrained(
6
+ repo_id="google/gemma-3-1b-it-qat-q4_0-gguf",
7
+ filename="gemma-3-1b-it-q4_0.gguf",
8
+ n_ctx=32768,
9
+ verbose=False # Mute llama.cpp logs
10
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
+ # Define the function that runs the model
13
+ def chat_with_gemma(user_input, temperature, top_p, frequency_penalty, presence_penalty):
14
+ full_prompt = f"{user_input}\nAnswer in no more than 150 words."
15
 
16
+ response = llm.create_chat_completion(
17
+ messages=[{"role": "user", "content": full_prompt}],
18
+ max_tokens=200,
 
19
  temperature=temperature,
20
  top_p=top_p,
21
+ frequency_penalty=frequency_penalty,
22
+ presence_penalty=presence_penalty
23
+ )
24
+
25
+ return response["choices"][0]["message"]["content"].strip()
26
+
27
+ # Set up the Gradio interface
28
+ demo = gr.Interface(
29
+ fn=chat_with_gemma,
30
+ inputs=[
31
+ gr.Textbox(label="Enter your message to Gemma"),
32
+ gr.Slider(0.0, 1.5, value=0.7, step=0.05, label="Temperature"),
33
+ gr.Slider(0.0, 1.0, value=0.9, step=0.05, label="Top-p (Nucleus Sampling)"),
34
+ gr.Slider(0.0, 2.0, value=0.4, step=0.1, label="Frequency Penalty"),
35
+ gr.Slider(0.0, 2.0, value=0.2, step=0.1, label="Presence Penalty")
 
 
 
 
 
 
 
 
36
  ],
37
+ outputs=gr.Textbox(label="Gemma's Response", lines=8),
38
+ title="Talk to Gemma",
39
+ description="Generate short responses using Google's Gemma model with adjustable settings."
40
  )
41
 
42
+ # Launch the app
43
+ demo.launch(share=True, enable_api=False)
44
 
45
+ #demo.launch(auth=("username", "password"))
46
+ #enable the above and remove the current demo.launch settings to enable api useage, but enable a password and username to prevent someone form using your api. Currently set to default username 'username' and default password 'password'.