lorenzoscottb commited on
Commit
cbb2414
Β·
1 Parent(s): 91beaca

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -12
app.py CHANGED
@@ -2,6 +2,7 @@ import os
2
  import numpy as np
3
  import gradio as gr
4
  from gradio.mix import Series
 
5
 
6
  path_to_L_model = str(os.environ['path_to_L_model'])
7
  read_token = str(os.environ['read_token'])
@@ -9,17 +10,46 @@ read_token = str(os.environ['read_token'])
9
  description = "Talk to Breud!"
10
  title = "Breud (BERT + Freud)"
11
 
12
- wisper = gr.Interface.load("models/openai/whisper-base")
13
 
14
- interface_model_L = gr.Interface.load(
15
- name=path_to_L_model,
16
- api_key=read_token,
17
- )
18
 
19
- Series(
20
- wisper,
21
- interface_model_L,
22
- description = description,
23
- title = title,
24
- inputs = gr.Audio(source="microphone"),
25
- ).launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  import numpy as np
3
  import gradio as gr
4
  from gradio.mix import Series
5
+ from transformers import pipeline
6
 
7
  path_to_L_model = str(os.environ['path_to_L_model'])
8
  read_token = str(os.environ['read_token'])
 
10
  description = "Talk to Breud!"
11
  title = "Breud (BERT + Freud)"
12
 
13
+ # wisper = gr.Interface.load("models/openai/whisper-base")
14
 
15
+ # interface_model_L = gr.Interface.load(
16
+ # name=path_to_L_model,
17
+ # api_key=read_token,
18
+ # )
19
 
20
+ # Series(
21
+ # wisper,
22
+ # interface_model_L,
23
+ # description = description,
24
+ # title = title,
25
+ # inputs = gr.Audio(source="microphone"),
26
+ # ).launch()
27
+
28
+
29
+ asr = pipeline("automatic-speech-recognition", "models/openai/whisper-base")
30
+ classifier = pipeline("text-classification", path_to_L_model, api_token=read_token)
31
+
32
+
33
+ def speech_to_text(speech):
34
+ text = asr(speech)["text"]
35
+ return text
36
+
37
+
38
+ def text_to_sentiment(text):
39
+ return classifier(text)[0]["label"]
40
+
41
+
42
+ demo = gr.Blocks()
43
+
44
+ with demo:
45
+ audio_file = gr.Audio(source="microphone")
46
+ text = gr.Textbox()
47
+ label = gr.Label()
48
+
49
+ b1 = gr.Button("Recognize Speech")
50
+ b2 = gr.Button("Classify Sentiment")
51
+
52
+ b1.click(speech_to_text, inputs=audio_file, outputs=text)
53
+ b2.click(text_to_sentiment, inputs=text, outputs=label)
54
+
55
+ demo.launch()