Spaces:
Runtime error
Runtime error
import os | |
import numpy as np | |
import gradio as gr | |
from gradio.mix import Series | |
from transformers import pipeline | |
path_to_L_model = str(os.environ['path_to_L_model']) | |
read_token = str(os.environ['read_token']) | |
description = "Talk to Breud!" | |
title = "Breud (BERT + Freud)" | |
# wisper = gr.Interface.load("models/openai/whisper-base") | |
# interface_model_L = gr.Interface.load( | |
# name=path_to_L_model, | |
# api_key=read_token, | |
# ) | |
# Series( | |
# wisper, | |
# interface_model_L, | |
# description = description, | |
# title = title, | |
# inputs = gr.Audio(source="microphone"), | |
# ).launch() | |
asr = pipeline("automatic-speech-recognition", "openai/whisper-base") | |
classifier = pipeline("text-classification", path_to_L_model, api_token=read_token) | |
def speech_to_text(speech): | |
text = asr(speech)["text"] | |
return text | |
def text_to_sentiment(text): | |
return classifier(text)[0]["label"] | |
demo = gr.Blocks() | |
with demo: | |
audio_file = gr.Audio(source="microphone") | |
text = gr.Textbox() | |
label = gr.Label() | |
b1 = gr.Button("Recognize Speech") | |
b2 = gr.Button("Classify Sentiment") | |
b1.click(speech_to_text, inputs=audio_file, outputs=text) | |
b2.click(text_to_sentiment, inputs=text, outputs=label) | |
demo.launch() |