|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "TheBloke/MythoMax-L2-13B-GGUF" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
|
|
def chat(input_text): |
|
inputs = tokenizer(input_text, return_tensors="pt") |
|
output = model.generate(**inputs, max_new_tokens=100) |
|
response = tokenizer.decode(output[0], skip_special_tokens=True) |
|
return response |
|
|
|
iface = gr.Interface( |
|
fn=chat, |
|
inputs="text", |
|
outputs="text", |
|
title="Dika AI - MythoMax Lite", |
|
description="Chatbot AI berbasis MythoMax 13B GGUF, optimized for Hugging Face free tier!" |
|
) |
|
|
|
iface.launch() |
|
|