import os os.system('mkdir /home/user/app/monotonic_align/monotonic_align') os.system('cd monotonic_align && python setup.py build_ext --inplace') os.system("gdown 'https://drive.google.com/uc?id=1q86w74Ygw2hNzYP9cWkeClGT5X25PvBT'") import matplotlib.pyplot as plt import os import json import math import torch from torch import nn from torch.nn import functional as F from torch.utils.data import DataLoader import commons import utils from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate from models import SynthesizerTrn from text.symbols import symbols from text import text_to_sequence from scipy.io.wavfile import write import streamlit as st def get_vi_audio(text): os.system(f"echo {text} | piper --model vi_VN-vivos-x_low --output_file vi_output.wav") def get_text(text, hps): text_norm = text_to_sequence(text, hps.data.text_cleaners) if hps.data.add_blank: text_norm = commons.intersperse(text_norm, 0) text_norm = torch.LongTensor(text_norm) return text_norm hps = utils.get_hparams_from_file("./configs/ljs_base.json") net_g = SynthesizerTrn( len(symbols), hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, **hps.model) _ = net_g.eval() _ = utils.load_checkpoint("pretrained_ljs.pth", net_g, None) st.title("VITS Text-to-Speech Demo") # Input text box for user to enter text text_input = st.text_input("Enter text to convert to speech", value="Chào mừng các bạn đến với môn Xử lí tiếng nói") ##### A demo for the input text ##### # Convert the text to the appropriate format (e.g., phoneme or character representation) stn_tst = get_text(text_input, hps) with torch.no_grad(): x_tst = stn_tst.unsqueeze(0) x_tst_lengths = torch.LongTensor([stn_tst.size(0)]) audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.float().numpy() # Use hps.data.sampling_rate for playing the audio st.text("Before Fine-tuned:") st.audio(audio, format="audio/wav", sample_rate=hps.data.sampling_rate) get_vi_audio(text_input) st.text("After Fine-tuned:") st.audio("vi_output.wav", format="audio/wav") ##### User's Inference ##### if st.button("Generate Speech"): # Convert the text to the appropriate format (e.g., phoneme or character representation) stn_tst = get_text(text_input, hps) with torch.no_grad(): x_tst = stn_tst.unsqueeze(0) x_tst_lengths = torch.LongTensor([stn_tst.size(0)]) audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.float().numpy() # Use hps.data.sampling_rate for playing the audio st.text("Before Fine-tuned:") st.audio(audio, format="audio/wav", sample_rate=hps.data.sampling_rate) get_vi_audio(text_input) st.text("After Fine-tuned:") st.audio("vi_output.wav", format="audio/wav")