File size: 2,982 Bytes
d2ce515 4ea20e3 f0dd59b 4ea20e3 d2ce515 84fd7d5 d2ce515 84fd7d5 d2ce515 a98d2b9 d2ce515 84fd7d5 d2ce515 84fd7d5 d2ce515 84fd7d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
import os
os.system('mkdir /home/user/app/monotonic_align/monotonic_align')
os.system('cd monotonic_align && python setup.py build_ext --inplace')
os.system("gdown 'https://drive.google.com/uc?id=1q86w74Ygw2hNzYP9cWkeClGT5X25PvBT'")
import matplotlib.pyplot as plt
import os
import json
import math
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
import commons
import utils
from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate
from models import SynthesizerTrn
from text.symbols import symbols
from text import text_to_sequence
from scipy.io.wavfile import write
import streamlit as st
def get_vi_audio(text):
os.system(f"echo {text} | piper --model vi_VN-vivos-x_low --output_file vi_output.wav")
def get_text(text, hps):
text_norm = text_to_sequence(text, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
return text_norm
hps = utils.get_hparams_from_file("./configs/ljs_base.json")
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model)
_ = net_g.eval()
_ = utils.load_checkpoint("pretrained_ljs.pth", net_g, None)
st.title("VITS Text-to-Speech Demo")
# Input text box for user to enter text
text_input = st.text_input("Enter text to convert to speech", value="Chào mừng các bạn đến với môn Xử lí tiếng nói")
##### A demo for the input text #####
# Convert the text to the appropriate format (e.g., phoneme or character representation)
stn_tst = get_text(text_input, hps)
with torch.no_grad():
x_tst = stn_tst.unsqueeze(0)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.float().numpy()
# Use hps.data.sampling_rate for playing the audio
st.text("Before Fine-tuned:")
st.audio(audio, format="audio/wav", sample_rate=hps.data.sampling_rate)
get_vi_audio(text_input)
st.text("After Fine-tuned:")
st.audio("vi_output.wav", format="audio/wav")
##### User's Inference #####
if st.button("Generate Speech"):
# Convert the text to the appropriate format (e.g., phoneme or character representation)
stn_tst = get_text(text_input, hps)
with torch.no_grad():
x_tst = stn_tst.unsqueeze(0)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.float().numpy()
# Use hps.data.sampling_rate for playing the audio
st.text("Before Fine-tuned:")
st.audio(audio, format="audio/wav", sample_rate=hps.data.sampling_rate)
get_vi_audio(text_input)
st.text("After Fine-tuned:")
st.audio("vi_output.wav", format="audio/wav") |