File size: 61,114 Bytes
9922ae0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "bbac0476",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The gradio extension is already loaded. To reload it, use:\n",
      "  %reload_ext gradio\n"
     ]
    }
   ],
   "source": [
    "%load_ext gradio"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a83f8fbf",
   "metadata": {},
   "outputs": [],
   "source": [
    "%%blocks\n",
    "import gradio as gr\n",
    "from llama_cpp import Llama\n",
    "import llama_cpp\n",
    "from langchain.callbacks.manager import CallbackManager\n",
    "from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
    "\n",
    "\n",
    "llm = Llama(\n",
    "    model_path=r\"C:\\Users\\user\\breeze-7b-instruct-v1_0-q4_k_m.gguf\",\n",
    "    n_gpu_layers=100,\n",
    "    n_batch=512,\n",
    "    n_ctx=3000,\n",
    "    f16_kv=True,\n",
    "    callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),\n",
    "    verbose=False,\n",
    ")\n",
    "\n",
    "with gr.Blocks() as demo:\n",
    "    name=\"cora\"\n",
    "    gr.Markdown(f\"# Greetings {name}!\")\n",
    "    inp = gr.Textbox()\n",
    "    out = gr.Textbox()\n",
    "\n",
    "    inp.change(fn=lambda x: x, inputs=inp, outputs=out)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c51b8778",
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "import gradio as gr\n",
    "\n",
    "# 定義處理函數\n",
    "def process_user_input(message):\n",
    "    return message\n",
    "\n",
    "# 定義主函數\n",
    "def main_pipeline(message, history):\n",
    "    # 呼叫處理函數\n",
    "    response = process_user_input(message)\n",
    "    # 將輸出加入歷史訊息\n",
    "    return response\n",
    "\n",
    "# 創建 Gradio 介面\n",
    "chat_interface = gr.Interface(fn=main_pipeline,inputs=\"text\",outputs=\"text\",live=True)\n",
    "\n",
    "# 啟動應用程式\n",
    "if __name__ == \"__main__\":\n",
    "    \n",
    "    chat_interface.launch()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3ff36b6c-1b1d-4703-96f7-65642fae5722",
   "metadata": {},
   "outputs": [],
   "source": [
    "import gradio as gr\n",
    "\n",
    "def process_user_input(message):\n",
    "    return message\n",
    "\n",
    "def main_pipeline(message, history):\n",
    "    response = process_user_input(message)\n",
    "    return response\n",
    "\n",
    "chat_interface = gr.ChatInterface(main_pipeline, type=\"messages\")\n",
    "\n",
    "if __name__ == \"__main__\":\n",
    "    chat_interface.launch()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ee5766db-3500-4082-a634-2b1cdad5859b",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4d1d8fe7",
   "metadata": {},
   "outputs": [],
   "source": [
    "import gradio as gr\n",
    "from llama_cpp import Llama\n",
    "from langchain_community.llms import LlamaCpp\n",
    "from langchain.prompts import PromptTemplate\n",
    "import llama_cpp\n",
    "from langchain.callbacks.manager import CallbackManager\n",
    "from sentence_transformers import SentenceTransformer\n",
    "from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "import re\n",
    "import os\n",
    "from sklearn.metrics.pairwise import cosine_similarity\n",
    "\n",
    "# 定義輔助函式\n",
    "def process_user_input(message):\n",
    "    return message\n",
    "\n",
    "#     # 假設 PromptTemplate 和 invoke_with_temperature 已正確定義\n",
    "#     user_mental_state4 = PromptTemplate(\n",
    "#         input_variables=[\"input\"],\n",
    "#         template=\"\"\"...\"\"\"\n",
    "#     )\n",
    "    \n",
    "#     df_user = pd.DataFrame(columns=[\"輸入內容\", \"形容詞1\", \"形容詞2\", \"形容詞3\", \"角色1\", \"角色2\", \"角色3\"])\n",
    "#     prompt_value1 = user_mental_state4.invoke({\"input\": message})\n",
    "#     string = invoke_with_temperature(prompt_value1)\n",
    "#     adjectives = [adj.strip() for adj in re.split('[,、,]', string)]\n",
    "#     index = len(df_user)\n",
    "#     df_user.loc[index, '輸入內容'] = message\n",
    "#     if len(adjectives) == 3:\n",
    "#         df_user.loc[index, '形容詞1'] = adjectives[0]\n",
    "#         df_user.loc[index, '形容詞2'] = adjectives[1]\n",
    "#         df_user.loc[index, '形容詞3'] = adjectives[2]\n",
    "#     df_user.to_excel(\"user_gradio系統.xlsx\")\n",
    "#    return message\n",
    "\n",
    "# 主邏輯\n",
    "def main_pipeline(message, history):\n",
    "    df_user = process_user_input(message)\n",
    "    return df_user\n",
    "\n",
    "demo=gr.ChatInterface(main_pipeline)\n",
    "\n",
    "# 主程式進入點\n",
    "if __name__ == \"__main__\":\n",
    "    \n",
    "    demo.launch()\n",
    "    \n",
    "# import gradio as gr\n",
    "\n",
    "# # 定義處理函數\n",
    "# def process_user_input(message):\n",
    "#     return message\n",
    "\n",
    "# # 定義主函數\n",
    "# def main_pipeline(message, history):\n",
    "#     # 呼叫處理函數\n",
    "#     response = process_user_input(message)\n",
    "#     # 將輸出加入歷史訊息\n",
    "#     return response\n",
    "\n",
    "# # 創建 Gradio 介面\n",
    "# chat_interface = gr.ChatInterface(main_pipeline)\n",
    "\n",
    "# # 啟動應用程式\n",
    "# if __name__ == \"__main__\":\n",
    "#     chat_interface.launch()\n",
    "        "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "4df2a74d",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "WARNING:tensorflow:From C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\tf_keras\\src\\losses.py:2976: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead.\n",
      "\n",
      "Running on local URL:  http://127.0.0.1:7864\n",
      "\n",
      "To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7864/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\gradio\\analytics.py:106: UserWarning: IMPORTANT: You are using gradio version 4.44.0, however version 4.44.1 is available, please upgrade. \n",
      "--------\n",
      "  warnings.warn(\n",
      "Traceback (most recent call last):\n",
      "  File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\gradio\\queueing.py\", line 536, in process_events\n",
      "    response = await route_utils.call_process_api(\n",
      "  File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\gradio\\route_utils.py\", line 322, in call_process_api\n",
      "    output = await app.get_blocks().process_api(\n",
      "  File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\gradio\\blocks.py\", line 1935, in process_api\n",
      "    result = await self.call_function(\n",
      "  File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\gradio\\blocks.py\", line 1518, in call_function\n",
      "    prediction = await fn(*processed_input)\n",
      "  File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\gradio\\utils.py\", line 793, in async_wrapper\n",
      "    response = await f(*args, **kwargs)\n",
      "  File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\gradio\\chat_interface.py\", line 623, in _submit_fn\n",
      "    response = await anyio.to_thread.run_sync(\n",
      "  File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\anyio\\to_thread.py\", line 56, in run_sync\n",
      "    return await get_async_backend().run_sync_in_worker_thread(\n",
      "  File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 2441, in run_sync_in_worker_thread\n",
      "    return await future\n",
      "  File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 943, in run\n",
      "    result = context.run(func, *args)\n",
      "  File \"C:\\Users\\user\\AppData\\Local\\Temp\\ipykernel_17468\\2638884024.py\", line 229, in main_pipeline\n",
      "    df_filter=filter(sorted_df)\n",
      "  File \"C:\\Users\\user\\AppData\\Local\\Temp\\ipykernel_17468\\2638884024.py\", line 162, in filter\n",
      "    p=len(df_user)-1\n",
      "NameError: name 'df_user' is not defined\n"
     ]
    }
   ],
   "source": [
    "import gradio as gr\n",
    "from llama_cpp import Llama\n",
    "from langchain_community.llms import LlamaCpp\n",
    "from langchain.prompts import PromptTemplate\n",
    "import llama_cpp\n",
    "from langchain.callbacks.manager import CallbackManager\n",
    "from sentence_transformers import SentenceTransformer\n",
    "from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "import re\n",
    "import os\n",
    "from sklearn.metrics.pairwise import cosine_similarity\n",
    "\n",
    "model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2',device='cpu')\n",
    "\n",
    "# llm = LlamaCpp(\n",
    "#     model_path=r\"C:\\Users\\Cora\\.cache\\lm-studio\\models\\YC-Chen\\Breeze-7B-Instruct-v1_0-GGUF\\breeze-7b-instruct-v1_0-q4_k_m.gguf\",\n",
    "#     n_gpu_layers=100,\n",
    "#     n_batch=512,\n",
    "#     n_ctx=3000,\n",
    "#     f16_kv=True,\n",
    "#     callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),\n",
    "#     verbose=False,\n",
    "# )\n",
    "\n",
    "llm = LlamaCpp(\n",
    "    model_path=r\"C:\\Users\\user\\breeze-7b-instruct-v1_0-q4_k_m.gguf\",\n",
    "    n_gpu_layers=100,\n",
    "    n_batch=512,\n",
    "    n_ctx=3000,\n",
    "    f16_kv=True,\n",
    "    callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),\n",
    "    verbose=False,\n",
    ")\n",
    "\n",
    "embedd_bk=pd.read_pickle(r\"C:\\Users\\user\\推薦系統實作\\bk_description1_角色形容詞_677.pkl\")\n",
    "df_bk=pd.read_excel(r\"C:\\Users\\user\\推薦系統實作\\bk_description1_角色形容詞.xlsx\")\n",
    "\n",
    "def invoke_with_temperature(prompt, temperature=0.4):\n",
    "    return llm.invoke(prompt, temperature=temperature)\n",
    "\n",
    "def process_user_input(message):\n",
    "    user_mental_state4= PromptTemplate(\n",
    "        input_variables=[\"input\"],\n",
    "        template=\"\"\"[INST]<<SYS>>你是一位具有同理心的專業心理諮商師,沒有性別歧視,你可以客觀的根據談話內容的描述,判斷說話的人的心理困擾<</SYS>> \n",
    "        請根據{input}描述三個最有可能心理困擾,輸出只包含三個心理困擾,回答格式只採用CSV格式,分隔符號使用逗號,參考以下範例:名詞1,名詞2,名詞3。[/INST]\"\"\"\n",
    "    )\n",
    "    \n",
    "    user_character= PromptTemplate(\n",
    "        input_variables=[\"input\"],\n",
    "        template=\"\"\"[INST]<<SYS>>你是一位具有同理心的專業心理諮商師,沒有性別歧視,你可以客觀的根據談話內容的描述,判斷說話的大學生,在生活中的多重角色身分<</SYS>> \n",
    "        請你根據談話內容{input},客觀的判斷說話的大學生,在談話內容中的角色,以及他生活中其他角色的身分,提供三個最有可能的角色身分名詞,\n",
    "        輸出只包含三個身分名詞,回答格式只採用CSV格式,分隔符號使用逗號,參考以下範例:名詞1,名詞2,名詞3。[/INST]\"\"\"\n",
    "    )\n",
    "    \n",
    "\n",
    "    df_user=pd.DataFrame(columns=[\"輸入內容\",\"形容詞1\", \"形容詞2\", \"形容詞3\", \"角色1\", \"角色2\", \"角色3\"])\n",
    "    #df_user_record=pd.read_excel(r\"C:\\Users\\Cora\\推薦系統實作\\gradio系統歷史紀錄.xlsx\")\n",
    "    \n",
    "\n",
    "    prompt_value1=user_mental_state4.invoke({\"input\":message})\n",
    "    string=invoke_with_temperature(prompt_value1)\n",
    "    #print(\"\\n\")\n",
    "\n",
    "    # 將字符串分割為名詞\n",
    "    adjectives = [adj.strip() for adj in re.split('[,、,]', string)]\n",
    "    \n",
    "    index=len(df_user)\n",
    "    df_user.loc[index, '輸入內容'] = message\n",
    "\n",
    "    # 確保形容詞數量符合欄位數量\n",
    "    if len(adjectives) == 3:\n",
    "        df_user.loc[index, '形容詞1'] = adjectives[0]\n",
    "        df_user.loc[index, '形容詞2'] = adjectives[1]\n",
    "        df_user.loc[index, '形容詞3'] = adjectives[2]\n",
    "    df_user.to_excel(\"user_gradio系統.xlsx\")\n",
    "    return df_user\n",
    "\n",
    "def embedd_df_user(df_user):\n",
    "    \n",
    "    columns_to_encode=df_user.loc[:,[\"形容詞1\", \"形容詞2\", \"形容詞3\"]]\n",
    "\n",
    "    # 初始化一個空的 DataFrame,用來存儲向量化結果\n",
    "    embedd_user=df_user[[\"輸入內容\"]]\n",
    "    #user_em= user_em.assign(形容詞1=None, 形容詞2=None, 形容詞3=None,角色1=None,角色2=None,角色3=None)\n",
    "    embedd_user= embedd_user.assign(形容詞1=None, 形容詞2=None, 形容詞3=None)\n",
    "    \n",
    "\n",
    "    # 遍歷每一個單元格,將結果存入新的 DataFrame 中\n",
    "    i=len(df_user)-1\n",
    "    for col in columns_to_encode:\n",
    "        #print(i,col)\n",
    "        # 將每個單元格的內容進行向量化\n",
    "        embedd_user.at[i, col] = model.encode(df_user.at[i, col])           \n",
    "    \n",
    "    embedd_user.to_pickle(r\"C:\\Users\\user\\推薦系統實作\\user_gradio系統.pkl\")\n",
    "    \n",
    "    return embedd_user\n",
    "\n",
    "def top_n_books_by_average(df, n=3):\n",
    "    \n",
    "    # 根据 `average` 列降序排序\n",
    "    sorted_df = df.sort_values(by='average', ascending=False)\n",
    "    \n",
    "    # 选择前 N 行\n",
    "    top_n_df = sorted_df.head(n)\n",
    "    \n",
    "    # 提取书名列\n",
    "    top_books = top_n_df['書名'].tolist()\n",
    "    \n",
    "    return top_books,sorted_df\n",
    "\n",
    "def similarity(embedd_user,embedd_bk,df_bk):\n",
    "    df_similarity= pd.DataFrame(df_bk[['書名',\"內容簡介\",\"URL\",\"形容詞1\", \"形容詞2\", \"形容詞3\", '角色1', '角色2', '角色3']])\n",
    "    df_similarity['average'] = np.nan\n",
    "    #for p in range(len(embedd_user)): \n",
    "    index=len(embedd_user)-1               \n",
    "    for k in range(len(embedd_bk)):\n",
    "            list=[]\n",
    "            for i in range(1,4):\n",
    "                for j in range(3,6):\n",
    "                    vec1=embedd_user.iloc[index,i]#i是第i個形容詞,數字是第幾個是使用者輸入\n",
    "                    vec2=embedd_bk.iloc[k,j]\n",
    "                    similarity = cosine_similarity([vec1], [vec2])\n",
    "                    list.append(similarity[0][0])\n",
    "            # 计算总和\n",
    "            total_sum = sum(list)\n",
    "            # 计算数量\n",
    "            count = len(list)\n",
    "            # 计算平均值\n",
    "            average = total_sum / count\n",
    "            df_similarity.loc[k,'average']=average\n",
    "\n",
    "    top_books,sorted_df = top_n_books_by_average(df_similarity)\n",
    "    return sorted_df     \n",
    "\n",
    "def filter(sorted_df):\n",
    "    filter_prompt4 = PromptTemplate(\n",
    "        input_variables=[\"mental_issue\", \"user_identity\",\" book\",\"book_reader\", \"book_description\"],\n",
    "        template=\"\"\"[INST]<<SYS>>你是專業的心理諮商師和書籍推薦專家,擅長根據使用者的心理問題、身份特質,以及書名、書籍針對的主題和適合的讀者,判斷書籍是否適合推薦給使用者。\n",
    "\n",
    "        你的目的是幫助讀者找到可以緩解心理問題的書籍。請注意:\n",
    "        1. 若書籍針對的問題與使用者的心理問題有關聯,即使書籍適合的讀者群與使用者身份沒有直接關聯,應偏向推薦。\n",
    "        2. 若使用者身份的需求與書籍針對的問題有潛在關聯,應偏向推薦。\n",
    "        3. 若書籍適合的讀者與使用者身份特質有任何關聯,應傾向推薦。\n",
    "        4. 若書名跟使用者的心理問題或身分特質有任何關聯,應偏向推薦<</SYS>>\n",
    "\n",
    "        使用者提供的資訊如下:\n",
    "        使用者身份是「{user_identity}」,其心理問題是「{mental_issue}」。書名是{book},書籍適合的讀者群為「{book_reader}」,書籍針對的問題是「{book_description}」。\n",
    "\n",
    "        請根據以上資訊判斷這本書是否適合推薦給該使用者。\n",
    "        僅輸出「是」或「否」,輸出後即停止。[/INST]\"\"\"\n",
    "     )\n",
    "    df_filter=sorted_df.iloc[:20,:]\n",
    "    df_filter = df_filter.reset_index(drop=True)\n",
    "    df_filter=df_filter.assign(推薦=None)\n",
    "    #df_similarity= pd.DataFrame(df_bk[['書名',\"內容簡介\",\"URL\",\"形容詞1\", \"形容詞2\", \"形容詞3\", '角色1', '角色2', '角色3']])\n",
    "    #df_similarity['average'] = np.nan\n",
    "\n",
    "    \n",
    "    p=len(df_user)-1\n",
    "    for k in range(len(df_filter)):    \n",
    "        word=df_user[\"輸入內容\"].iloc[p]\n",
    "        #book_reader = df_filter[\"角色1\"].iloc[p] + \"or\" + df_filter[\"角色2\"].iloc[p] + \"or\" + df_filter[\"角色3\"].iloc[p]\n",
    "        book=df_filter[\"書名\"].iloc[k] \n",
    "        book_reader = df_filter[\"角色1\"].iloc[k] \n",
    "        user_identity = df_user[\"角色1\"].iloc[p]\n",
    "        mental_issue=df_user[\"形容詞1\"].iloc[p]+\"\"+df_user[\"形容詞2\"].iloc[p]+\"\"+df_user[\"形容詞3\"].iloc[p]\n",
    "        book_description=df_filter[\"形容詞1\"].iloc[k]+\"\"+df_filter[\"形容詞2\"].iloc[k]+\"\"+df_filter[\"形容詞3\"].iloc[k]\n",
    "        print(book_reader)\n",
    "        print(user_identity)\n",
    "        #output = filter_prompt1.invoke({\"user_identity\": user_identity, \"book_reader\": book_reader})\n",
    "        output = filter_prompt4.invoke({\"mental_issue\":mental_issue,\"user_identity\": user_identity, \"book\":book,\"book_description\":book_description,\"book_reader\": book_reader})\n",
    "        string2=invoke_with_temperature(output)\n",
    "        df_filter.loc[k, '推薦'] =string2\n",
    "        df_recommend=df_filter[df_filter[\"推薦\"].str.strip() == \"\"]\n",
    "        \n",
    "    return df_recommend\n",
    "def output_content(df_recommend):\n",
    "    content_prompt = PromptTemplate(\n",
    "        input_variables=[\"content\"],\n",
    "        template=\"\"\"[INST]<<SYS>>你是一個有同理心的心理師,負責推薦相關書籍給使用者<</SYS>>你是一個有同理心的心理師,\n",
    "        請根據{content},用平易近人且不官方的語氣,先介紹這本書的內容,總共約50-70字[/INST]\"\"\"\n",
    "    )\n",
    "\n",
    "    a=0\n",
    "    title=df_recommend.loc[a,\"書名\"]\n",
    "    #URL=sorted_df.iloc[a,1]\n",
    "    #content=sorted_df.iloc[a,2]\n",
    "    \n",
    "#     prompt_value2=content_prompt.invoke({\"content\":content})\n",
    "#     summary=invoke_with_temperature(prompt_value2)\n",
    "#     recommend_prompt = PromptTemplate(\n",
    "#         input_variables=[\"title\",\"URL\",\"summary\"],\n",
    "#         template=\"\"\"<<SYS>>\n",
    "#         你是一個有同理心的心理師,負責推薦相關書籍給使用者<</SYS>>\n",
    "#         [INST] \n",
    "#         請根據{title}{URL}{summary}產出訊息,開頭不要有空格,並在最後面加入一句或兩句鼓勵的話\n",
    "#         格式為:根據您的狀態,這裡提供一本書供您參考\\n\n",
    "#         書名:{title}\\n\n",
    "#         本書介紹:{summary}\\n\n",
    "#         購書網址:{URL}\\n\n",
    "#         希望對您有所幫助\n",
    "#         [/INST]\"\"\"\n",
    "#      )\n",
    "#    prompt_value1=recommend_prompt.invoke({\"title\":title,\"URL\":URL,\"summary\":summary})\n",
    "    \n",
    "    recommend_prompt = PromptTemplate(\n",
    "        input_variables=[\"title\"],\n",
    "        template=\"\"\"<<SYS>>\n",
    "        你是一個有同理心的心理師,負責推薦相關書籍給使用者<</SYS>>\n",
    "        [INST] \n",
    "        請根據{title}產出訊息,開頭不要有空格,並在最後面加入一句或兩句鼓勵的話\n",
    "        格式為:根據您的狀態,這裡提供一本書供您參考\\n\n",
    "        書名:{title}\\n\n",
    "        希望對您有所幫助\n",
    "        [/INST]\"\"\"\n",
    "     )\n",
    "    prompt_value1=recommend_prompt.invoke({\"title\":title})\n",
    "    output=invoke_with_temperature(prompt_value1,temperature=0.4)\n",
    "    return output                   \n",
    "                    \n",
    "def main_pipeline(message,history):\n",
    "                \n",
    "    df_user=process_user_input(message)\n",
    "    embedd_user=embedd_df_user(df_user)\n",
    "    sorted_df=similarity(embedd_user,embedd_bk,df_bk)\n",
    "    df_filter=filter(sorted_df)\n",
    "    final=output_content(df_filter)\n",
    "    return final  \n",
    "    \n",
    "\n",
    "# def recommend(message,history):\n",
    "#     result=main_pipeline(message)\n",
    "#     return result\n",
    "\n",
    "demo=gr.ChatInterface(main_pipeline,type=\"messages\")\n",
    "\n",
    "# with gr.Blocks() as demo:\n",
    "#     gr.Markdown(\"Start typing below and then click **Run** to see the output.\")\n",
    "#     with gr.Row():\n",
    "#         inp = gr.Textbox(placeholder=\"What is your name?\")\n",
    "#         out = gr.Textbox()\n",
    "#     btn = gr.Button(\"Run\")\n",
    "#     btn.click(fn=recommend, inputs=inp, outputs=out)\n",
    "if __name__ == \"__main__\":\n",
    "       demo.launch()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "487c853d",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running on local URL:  http://127.0.0.1:7866\n",
      "\n",
      "To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7866/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\gradio\\analytics.py:106: UserWarning: IMPORTANT: You are using gradio version 4.44.0, however version 4.44.1 is available, please upgrade. \n",
      "--------\n",
      "  warnings.warn(\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " 情緒控制困難,壓力負荷過高,人際衝突"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Traceback (most recent call last):\n",
      "  File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\gradio\\queueing.py\", line 536, in process_events\n",
      "    response = await route_utils.call_process_api(\n",
      "  File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\gradio\\route_utils.py\", line 322, in call_process_api\n",
      "    output = await app.get_blocks().process_api(\n",
      "  File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\gradio\\blocks.py\", line 1935, in process_api\n",
      "    result = await self.call_function(\n",
      "  File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\gradio\\blocks.py\", line 1518, in call_function\n",
      "    prediction = await fn(*processed_input)\n",
      "  File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\gradio\\utils.py\", line 793, in async_wrapper\n",
      "    response = await f(*args, **kwargs)\n",
      "  File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\gradio\\chat_interface.py\", line 623, in _submit_fn\n",
      "    response = await anyio.to_thread.run_sync(\n",
      "  File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\anyio\\to_thread.py\", line 56, in run_sync\n",
      "    return await get_async_backend().run_sync_in_worker_thread(\n",
      "  File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 2441, in run_sync_in_worker_thread\n",
      "    return await future\n",
      "  File \"C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 943, in run\n",
      "    result = context.run(func, *args)\n",
      "  File \"C:\\Users\\user\\AppData\\Local\\Temp\\ipykernel_17468\\1758736236.py\", line 78, in main_pipeline\n",
      "    df_filter=filter(sorted_df)\n",
      "  File \"C:\\Users\\user\\AppData\\Local\\Temp\\ipykernel_17468\\2638884024.py\", line 162, in filter\n",
      "    p=len(df_user)-1\n",
      "NameError: name 'df_user' is not defined\n"
     ]
    }
   ],
   "source": [
    "import gradio as gr\n",
    "from llama_cpp import Llama\n",
    "from langchain_community.llms import LlamaCpp\n",
    "from langchain.prompts import PromptTemplate\n",
    "import llama_cpp\n",
    "from langchain.callbacks.manager import CallbackManager\n",
    "from sentence_transformers import SentenceTransformer\n",
    "from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "import re\n",
    "import os\n",
    "from sklearn.metrics.pairwise import cosine_similarity\n",
    "\n",
    "model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2',device='cpu')\n",
    "\n",
    "llm = LlamaCpp(\n",
    "    model_path=r\"C:\\Users\\user\\breeze-7b-instruct-v1_0-q4_k_m.gguf\",\n",
    "    n_gpu_layers=100,\n",
    "    n_batch=512,\n",
    "    n_ctx=3000,\n",
    "    f16_kv=True,\n",
    "    callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),\n",
    "    verbose=False,\n",
    ")\n",
    "\n",
    "embedd_bk=pd.read_pickle(r\"C:\\Users\\user\\推薦系統實作\\bk_description1_角色形容詞_677.pkl\")\n",
    "df_bk=pd.read_excel(r\"C:\\Users\\user\\推薦系統實作\\bk_description1_角色形容詞.xlsx\")\n",
    "\n",
    "def invoke_with_temperature(prompt, temperature=0.4):\n",
    "    return llm.invoke(prompt, temperature=temperature)\n",
    "\n",
    "def process_user_input(message):\n",
    "    \n",
    "    user_mental_state4= PromptTemplate(\n",
    "        input_variables=[\"input\"],\n",
    "        template=\"\"\"[INST]<<SYS>>你是一位具有同理心的專業心理諮商師,沒有性別歧視,你可以客觀的根據談話內容的描述,判斷說話的人的心理困擾<</SYS>> \n",
    "        請根據{input}描述三個最有可能心理困擾,輸出只包含三個心理困擾,回答格式只採用CSV格式,分隔符號使用逗號,參考以下範例:名詞1,名詞2,名詞3。[/INST]\"\"\"\n",
    "    )\n",
    "    \n",
    "    user_character= PromptTemplate(\n",
    "        input_variables=[\"input\"],\n",
    "        template=\"\"\"[INST]<<SYS>>你是一位具有同理心的專業心理諮商師,沒有性別歧視,你可以客觀的根據談話內容的描述,判斷說話的大學生,在生活中的多重角色身分<</SYS>> \n",
    "        請你根據談話內容{input},客觀的判斷說話的大學生,在談話內容中的角色,以及他生活中其他角色的身分,提供三個最有可能的角色身分名詞,\n",
    "        輸出只包含三個身分名詞,回答格式只採用CSV格式,分隔符號使用逗號,參考以下範例:名詞1,名詞2,名詞3。[/INST]\"\"\"\n",
    "    )\n",
    "    \n",
    "\n",
    "    df_user=pd.DataFrame(columns=[\"輸入內容\",\"形容詞1\", \"形容詞2\", \"形容詞3\", \"角色1\", \"角色2\", \"角色3\"])\n",
    "    #df_user_record=pd.read_excel(r\"C:\\Users\\Cora\\推薦系統實作\\gradio系統歷史紀錄.xlsx\")\n",
    "    \n",
    "\n",
    "    prompt_value1=user_mental_state4.invoke({\"input\":message})\n",
    "    string=invoke_with_temperature(prompt_value1)\n",
    "    #print(\"\\n\")\n",
    "\n",
    "    # 將字符串分割為名詞\n",
    "    adjectives = [adj.strip() for adj in re.split('[,、,]', string)]\n",
    "    \n",
    "    index=len(df_user)\n",
    "    df_user.loc[index, '輸入內容'] = message\n",
    "\n",
    "    # 確保形容詞數量符合欄位數量\n",
    "    if len(adjectives) == 3:\n",
    "        df_user.loc[index, '形容詞1'] = adjectives[0]\n",
    "        df_user.loc[index, '形容詞2'] = adjectives[1]\n",
    "        df_user.loc[index, '形容詞3'] = adjectives[2]\n",
    "    df_user.to_excel(\"user_gradio系統.xlsx\")\n",
    "    return df_user\n",
    "\n",
    "               \n",
    "                    \n",
    "def main_pipeline(message,history):\n",
    "                \n",
    "    df_user=process_user_input(message)\n",
    "    embedd_user=embedd_df_user(df_user)\n",
    "    sorted_df=similarity(embedd_user,embedd_bk,df_bk)\n",
    "    df_filter=filter(sorted_df)\n",
    "    final=output_content(df_filter)\n",
    "    return final  \n",
    "    \n",
    "\n",
    "\n",
    "demo=gr.ChatInterface(main_pipeline,type=\"messages\")\n",
    "\n",
    "\n",
    "if __name__ == \"__main__\":\n",
    "       demo.launch()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "b3cadc4a-6f63-4038-bcfb-ef419ad5394a",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running on local URL:  http://127.0.0.1:7873\n",
      "\n",
      "To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7873/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\user\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\gradio\\analytics.py:106: UserWarning: IMPORTANT: You are using gradio version 4.44.0, however version 4.44.1 is available, please upgrade. \n",
      "--------\n",
      "  warnings.warn(\n"
     ]
    }
   ],
   "source": [
    "import gradio as gr\n",
    "from llama_cpp import Llama\n",
    "from langchain_community.llms import LlamaCpp\n",
    "from langchain.prompts import PromptTemplate\n",
    "import llama_cpp\n",
    "from langchain.callbacks.manager import CallbackManager\n",
    "from sentence_transformers import SentenceTransformer\n",
    "from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "import re\n",
    "import os\n",
    "from sklearn.metrics.pairwise import cosine_similarity\n",
    "\n",
    "model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2',device='cpu')\n",
    "\n",
    "title=\"書籍推薦平台\"\n",
    "\n",
    "# llm = LlamaCpp(\n",
    "#     model_path=r\"C:\\Users\\Cora\\.cache\\lm-studio\\models\\YC-Chen\\Breeze-7B-Instruct-v1_0-GGUF\\breeze-7b-instruct-v1_0-q4_k_m.gguf\",\n",
    "#     n_gpu_layers=100,\n",
    "#     n_batch=512,\n",
    "#     n_ctx=3000,\n",
    "#     f16_kv=True,\n",
    "#     callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),\n",
    "#     verbose=False,\n",
    "# )\n",
    "\n",
    "llm = LlamaCpp(\n",
    "    model_path=r\"C:\\Users\\user\\breeze-7b-instruct-v1_0-q4_k_m.gguf\",\n",
    "    n_gpu_layers=100,\n",
    "    n_batch=512,\n",
    "    n_ctx=3000,\n",
    "    f16_kv=True,\n",
    "    callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),\n",
    "    verbose=False,\n",
    ")\n",
    "\n",
    "embedd_bk=pd.read_pickle(r\"C:\\Users\\user\\推薦系統實作\\bk_description1_角色形容詞_677.pkl\")\n",
    "df_bk=pd.read_excel(r\"C:\\Users\\user\\推薦系統實作\\bk_description1_角色形容詞.xlsx\")\n",
    "\n",
    "def invoke_with_temperature(prompt, temperature=0.4):\n",
    "    return llm.invoke(prompt, temperature=temperature)\n",
    "\n",
    "def process_user_input(message):\n",
    "    user_mental_state4= PromptTemplate(\n",
    "        input_variables=[\"input\"],\n",
    "        template=\"\"\"[INST]<<SYS>>你是一位具有同理心的專業心理諮商師,沒有性別歧視,你可以客觀的根據談話內容的描述,判斷說話的人的心理困擾<</SYS>> \n",
    "        請根據{input}描述三個最有可能心理困擾,輸出只包含三個心理困擾,回答格式只採用CSV格式,分隔符號使用逗號,參考以下範例:名詞1,名詞2,名詞3。[/INST]\"\"\"\n",
    "    )\n",
    "    \n",
    "    user_character= PromptTemplate(\n",
    "        input_variables=[\"input\"],\n",
    "        template=\"\"\"[INST]<<SYS>>你是一位具有同理心的專業心理諮商師,沒有性別歧視,你可以客觀的根據談話內容的描述,判斷說話的大學生,在生活中的多重角色身分<</SYS>> \n",
    "        請你根據談話內容{input},客觀的判斷說話的大學生,在談話內容中的角色,以及他生活中其他角色的身分,提供三個最有可能的角色身分名詞,\n",
    "        輸出只包含三個身分名詞,回答格式只採用CSV格式,分隔符號使用逗號,參考以下範例:名詞1,名詞2,名詞3。[/INST]\"\"\"\n",
    "    )\n",
    "    \n",
    "\n",
    "    df_user=pd.DataFrame(columns=[\"輸入內容\",\"形容詞1\", \"形容詞2\", \"形容詞3\", \"角色1\", \"角色2\", \"角色3\"])\n",
    "    #df_user_record=pd.read_excel(r\"C:\\Users\\Cora\\推薦系統實作\\gradio系統歷史紀錄.xlsx\")\n",
    "    \n",
    "\n",
    "    prompt_value1=user_mental_state4.invoke({\"input\":message})\n",
    "    string=invoke_with_temperature(prompt_value1)\n",
    "    #print(\"\\n\")\n",
    "\n",
    "    # 將字符串分割為名詞\n",
    "    adjectives = [adj.strip() for adj in re.split('[,、,]', string)]\n",
    "    \n",
    "    index=len(df_user)\n",
    "    df_user.loc[index, '輸入內容'] = message\n",
    "\n",
    "    # 確保形容詞數量符合欄位數量\n",
    "    if len(adjectives) == 3:\n",
    "        df_user.loc[index, '形容詞1'] = adjectives[0]\n",
    "        df_user.loc[index, '形容詞2'] = adjectives[1]\n",
    "        df_user.loc[index, '形容詞3'] = adjectives[2]\n",
    "    df_user.to_excel(\"user_gradio系統.xlsx\")\n",
    "    return df_user\n",
    "    #return message\n",
    "\n",
    "def embedd_df_user(df_user):\n",
    "    \n",
    "    columns_to_encode=df_user.loc[:,[\"形容詞1\", \"形容詞2\", \"形容詞3\"]]\n",
    "\n",
    "    # 初始化一個空的 DataFrame,用來存儲向量化結果\n",
    "    embedd_user=df_user[[\"輸入內容\"]]\n",
    "    #user_em= user_em.assign(形容詞1=None, 形容詞2=None, 形容詞3=None,角色1=None,角色2=None,角色3=None)\n",
    "    embedd_user= embedd_user.assign(形容詞1=None, 形容詞2=None, 形容詞3=None)\n",
    "    \n",
    "\n",
    "    # 遍歷每一個單元格,將結果存入新的 DataFrame 中\n",
    "    i=len(df_user)-1\n",
    "    for col in columns_to_encode:\n",
    "        #print(i,col)\n",
    "        # 將每個單元格的內容進行向量化\n",
    "        embedd_user.at[i, col] = model.encode(df_user.at[i, col])           \n",
    "    \n",
    "    embedd_user.to_pickle(r\"C:\\Users\\user\\推薦系統實作\\user_gradio系統.pkl\")\n",
    "    \n",
    "    return embedd_user\n",
    "    #word=\"happy\"\n",
    "    #return word\n",
    "\n",
    "def top_n_books_by_average(df, n=3):\n",
    "    \n",
    "    # 根据 `average` 列降序排序\n",
    "    sorted_df = df.sort_values(by='average', ascending=False)\n",
    "    \n",
    "    # 选择前 N 行\n",
    "    top_n_df = sorted_df.head(n)\n",
    "    \n",
    "    # 提取书名列\n",
    "    top_books = top_n_df['書名'].tolist()\n",
    "    \n",
    "    return top_books,sorted_df\n",
    "\n",
    "def similarity(embedd_user,embedd_bk,df_bk):\n",
    "    df_similarity= pd.DataFrame(df_bk[['書名',\"內容簡介\",\"URL\",\"形容詞1\", \"形容詞2\", \"形容詞3\", '角色1', '角色2', '角色3']])\n",
    "    df_similarity['average'] = np.nan\n",
    "    #for p in range(len(embedd_user)): \n",
    "    index=len(embedd_user)-1               \n",
    "    for k in range(len(embedd_bk)):\n",
    "            list=[]\n",
    "            for i in range(1,4):\n",
    "                for j in range(3,6):\n",
    "                    vec1=embedd_user.iloc[index,i]#i是第i個形容詞,數字是第幾個是使用者輸入\n",
    "                    vec2=embedd_bk.iloc[k,j]\n",
    "                    similarity = cosine_similarity([vec1], [vec2])\n",
    "                    list.append(similarity[0][0])\n",
    "            # 计算总和\n",
    "            total_sum = sum(list)\n",
    "            # 计算数量\n",
    "            count = len(list)\n",
    "            # 计算平均值\n",
    "            average = total_sum / count\n",
    "            df_similarity.loc[k,'average']=average\n",
    "\n",
    "    top_books,sorted_df = top_n_books_by_average(df_similarity)\n",
    "    return sorted_df     \n",
    "\n",
    "def filter(sorted_df,df_user):\n",
    "    filter_prompt4 = PromptTemplate(\n",
    "        input_variables=[\"mental_issue\", \"user_identity\",\" book\",\"book_reader\", \"book_description\"],\n",
    "        template=\"\"\"[INST]<<SYS>>你是專業的心理諮商師和書籍推薦專家,擅長根據使用者的心理問題、身份特質,以及書名、書籍針對的主題和適合的讀者,判斷書籍是否適合推薦給使用者。\n",
    "\n",
    "        你的目的是幫助讀者找到可以緩解心理問題的書籍。請注意:\n",
    "        1. 若書籍針對的問題與使用者的心理問題有關聯,即使書籍適合的讀者群與使用者身份沒有直接關聯,應偏向推薦。\n",
    "        2. 若使用者身份的需求與書籍針對的問題有潛在關聯,應偏向推薦。\n",
    "        3. 若書籍適合的讀者與使用者身份特質有任何關聯,應傾向推薦。\n",
    "        4. 若書名跟使用者的心理問題或身分特質有任何關聯,應偏向推薦<</SYS>>\n",
    "\n",
    "        使用者提供的資訊如下:\n",
    "        使用者身份是「{user_identity}」,其心理問題是「{mental_issue}」。書名是{book},書籍適合的讀者群為「{book_reader}」,書籍針對的問題是「{book_description}」。\n",
    "\n",
    "        請根據以上資訊判斷這本書是否適合推薦給該使用者。\n",
    "        僅輸出「是」或「否」,輸出後即停止。[/INST]\"\"\"\n",
    "     )\n",
    "    df_filter=sorted_df.iloc[:20,:]\n",
    "    df_filter = df_filter.reset_index(drop=True)\n",
    "    df_filter=df_filter.assign(推薦=None)\n",
    "    #df_similarity= pd.DataFrame(df_bk[['書名',\"內容簡介\",\"URL\",\"形容詞1\", \"形容詞2\", \"形容詞3\", '角色1', '角色2', '角色3']])\n",
    "    #df_similarity['average'] = np.nan\n",
    "\n",
    "    \n",
    "    p=len(df_user)-1\n",
    "    for k in range(len(df_filter)):    \n",
    "        word=df_user[\"輸入內容\"].iloc[p]\n",
    "        #book_reader = df_filter[\"角色1\"].iloc[p] + \"or\" + df_filter[\"角色2\"].iloc[p] + \"or\" + df_filter[\"角色3\"].iloc[p]\n",
    "        book=df_filter[\"書名\"].iloc[k] \n",
    "        book_reader = df_filter[\"角色1\"].iloc[k] \n",
    "        user_identity = df_user[\"角色1\"].iloc[p]\n",
    "        mental_issue=df_user[\"形容詞1\"].iloc[p]+\"\"+df_user[\"形容詞2\"].iloc[p]+\"\"+df_user[\"形容詞3\"].iloc[p]\n",
    "        book_description=df_filter[\"形容詞1\"].iloc[k]+\"\"+df_filter[\"形容詞2\"].iloc[k]+\"\"+df_filter[\"形容詞3\"].iloc[k]\n",
    "        print(book_reader)\n",
    "        print(user_identity)\n",
    "        #output = filter_prompt1.invoke({\"user_identity\": user_identity, \"book_reader\": book_reader})\n",
    "        output = filter_prompt4.invoke({\"mental_issue\":mental_issue,\"user_identity\": user_identity, \"book\":book,\"book_description\":book_description,\"book_reader\": book_reader})\n",
    "        string2=invoke_with_temperature(output)\n",
    "        df_filter.loc[k, '推薦'] =string2\n",
    "        df_recommend=df_filter[df_filter[\"推薦\"].str.strip() == \"\"]\n",
    "        \n",
    "    return df_recommend\n",
    "    \n",
    "def output_content(df_recommend):\n",
    "    content_prompt = PromptTemplate(\n",
    "        input_variables=[\"content\"],\n",
    "        template=\"\"\"[INST]<<SYS>>你是一個有同理心的心理師,負責推薦相關書籍給使用者<</SYS>>你是一個有同理心的心理師,\n",
    "        請根據{content},用平易近人且不官方的語氣,先介紹這本書的內容,總共約50-70字[/INST]\"\"\"\n",
    "    )\n",
    "\n",
    "    a=0\n",
    "    title=df_recommend.iloc[a,0]#不用loc,因為filter的時候index沒有重新歸零\n",
    "    #URL=sorted_df.iloc[a,1]\n",
    "    #content=sorted_df.iloc[a,2]\n",
    "    \n",
    "#     prompt_value2=content_prompt.invoke({\"content\":content})\n",
    "#     summary=invoke_with_temperature(prompt_value2)\n",
    "#     recommend_prompt = PromptTemplate(\n",
    "#         input_variables=[\"title\",\"URL\",\"summary\"],\n",
    "#         template=\"\"\"<<SYS>>\n",
    "#         你是一個有同理心的心理師,負責推薦相關書籍給使用者<</SYS>>\n",
    "#         [INST] \n",
    "#         請根據{title}{URL}{summary}產出訊息,開頭不要有空格,並在最後面加入一句或兩句鼓勵的話\n",
    "#         格式為:根據您的狀態,這裡提供一本書供您參考\\n\n",
    "#         書名:{title}\\n\n",
    "#         本書介紹:{summary}\\n\n",
    "#         購書網址:{URL}\\n\n",
    "#         希望對您有所幫助\n",
    "#         [/INST]\"\"\"\n",
    "#      )\n",
    "#    prompt_value1=recommend_prompt.invoke({\"title\":title,\"URL\":URL,\"summary\":summary})\n",
    "    \n",
    "    recommend_prompt = PromptTemplate(\n",
    "        input_variables=[\"title\"],\n",
    "        template=\"\"\"<<SYS>>\n",
    "        你是一個有同理心的心理師,負責推薦相關書籍給使用者<</SYS>>\n",
    "        [INST] \n",
    "        請根據{title}產出訊息,開頭不要有空格,並在最後面加入一句或兩句鼓勵的話\n",
    "        格式為:根據您的狀態,這裡提供一本書供您參考\\n\n",
    "        書名:{title}\\n\n",
    "        希望對您有所幫助\n",
    "        [/INST]\"\"\"\n",
    "     )\n",
    "    prompt_value1=recommend_prompt.invoke({\"title\":title})\n",
    "    output=invoke_with_temperature(prompt_value1,temperature=0.4)\n",
    "    return output                   \n",
    "                    \n",
    "def main_pipeline(message,history):\n",
    "                \n",
    "    df_user=process_user_input(message)\n",
    "    embedd_user=embedd_df_user(df_user)\n",
    "    sorted_df=similarity(embedd_user,embedd_bk,df_bk)\n",
    "    df_filter=filter(sorted_df,df_user)\n",
    "    final=output_content(df_filter)\n",
    "    return final\n",
    "    #return embedd_user\n",
    "    \n",
    "    \n",
    "    \n",
    "\n",
    "# def recommend(message,history):\n",
    "#     result=main_pipeline(message)\n",
    "#     return result\n",
    "\n",
    "demo=gr.ChatInterface(main_pipeline,type=\"messages\")\n",
    "\n",
    "\n",
    "if __name__ == \"__main__\":\n",
    "       demo.launch()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "aaad2fb2-a8d8-46e4-b9d4-c276f5ef0cb0",
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "pip install tf-keras"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "cc344ace-81f1-45f2-ad4a-9cca508aa053",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>書名</th>\n",
       "      <th>內容簡介</th>\n",
       "      <th>URL</th>\n",
       "      <th>形容詞1</th>\n",
       "      <th>形容詞2</th>\n",
       "      <th>形容詞3</th>\n",
       "      <th>角色1</th>\n",
       "      <th>角色2</th>\n",
       "      <th>角色3</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>這僅有一次的人生, 我不想說抱歉</td>\n",
       "      <td>你走太快了,容易迷路,要等靈魂跟上來,才能走更遠的路。那些你想要做成的事情,你做成了的事情,...</td>\n",
       "      <td>https://www.eslite.com/product/100120106326824...</td>\n",
       "      <td>自我期許</td>\n",
       "      <td>自我反思</td>\n",
       "      <td>人生目標</td>\n",
       "      <td>自我提升</td>\n",
       "      <td>人生感悟</td>\n",
       "      <td>內心成長</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>我只是想分手而已: 親密殺人, 被深愛的男人殺死的女人們</td>\n",
       "      <td>親密殺人不是約會暴力是整個社會必須全力阻止的連續殺人!只是想跟他分手的我,為何最後卻送了命?...</td>\n",
       "      <td>https://www.eslite.com/product/100120106326824...</td>\n",
       "      <td>心理創傷</td>\n",
       "      <td>暴力受暴經驗</td>\n",
       "      <td>感情困境</td>\n",
       "      <td>法律系學生</td>\n",
       "      <td>社會工作者</td>\n",
       "      <td>性別平權運動者</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>輕鬆思考法: 培養靈活觀點的150個啟示</td>\n",
       "      <td>本書特色150則啟示點醒沉浮於忙碌生活的現代人!篇幅短小、內容精闢,1分鐘打開新思維!擁有不...</td>\n",
       "      <td>https://www.eslite.com/product/100121372526824...</td>\n",
       "      <td>焦慮</td>\n",
       "      <td>孤獨</td>\n",
       "      <td>成長</td>\n",
       "      <td>職場人</td>\n",
       "      <td>旅行愛好者</td>\n",
       "      <td>追求自我成長的人</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>因為人類思維太僵化, 所以需要創新心理學: 心態革命, 大腦中的髮夾彎, 掀起你的思路風暴</td>\n",
       "      <td>大腦中的髮夾彎,掀起你的思路風暴!從理性到感性,不同思考方式將會開啟新的視角、新的世界!逆向...</td>\n",
       "      <td>https://www.eslite.com/product/100122024826824...</td>\n",
       "      <td>焦慮</td>\n",
       "      <td>壓力</td>\n",
       "      <td>抑鬱</td>\n",
       "      <td>好奇心旺盛的思考愛好者</td>\n",
       "      <td>希望提高日常解決問題技巧的人</td>\n",
       "      <td>渴望提升創新思維能力的人</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>人生心理學</td>\n",
       "      <td>找出人生發展的路向從來都不容易,無論你是臨近畢業的大專生,或是已在職場上打滾了好些年正在瓶頸...</td>\n",
       "      <td>https://www.eslite.com/product/100121238026824...</td>\n",
       "      <td>生涯規劃</td>\n",
       "      <td>自我覺察</td>\n",
       "      <td>人生意義</td>\n",
       "      <td>大學生</td>\n",
       "      <td>職場工作者</td>\n",
       "      <td>心理學研究者</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>672</th>\n",
       "      <td>你想要的一切, 宇宙早已為你預備</td>\n",
       "      <td>宇宙會把最好的獻給你。如果你願意放下自我限制的信念,全然信任這股奇妙的力量,豐盛的人生自然會...</td>\n",
       "      <td>https://www.eslite.com/product/100120176426824...</td>\n",
       "      <td>困惑</td>\n",
       "      <td>壓力</td>\n",
       "      <td>不滿</td>\n",
       "      <td>焦慮症患者</td>\n",
       "      <td>心理負荷過重者</td>\n",
       "      <td>靈性追求者</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>673</th>\n",
       "      <td>妄想的力量: 迷信、儀式感與過度樂觀的非理性心理學</td>\n",
       "      <td>妄想雖然可恥但是有用!亞馬遜讀者五星強推!最熱愛怪力亂神的美國心理學暢銷作家帶你重新認識幻想...</td>\n",
       "      <td>https://www.eslite.com/product/100120106326824...</td>\n",
       "      <td>妄想</td>\n",
       "      <td>心理假象</td>\n",
       "      <td>樂觀</td>\n",
       "      <td>心理學家</td>\n",
       "      <td>精神病患者家屬</td>\n",
       "      <td>普通大眾</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>674</th>\n",
       "      <td>悲傷復原力: 一位心理學專家, 也是位失去愛女的母親, 透過復原力心理學, 走過分離崩解的悲傷</td>\n",
       "      <td>面對至親至愛的離去,如果悲傷難免,我們可以做些什麼,度過這場巨大風暴?紐約時報、華爾街日報,...</td>\n",
       "      <td>https://www.eslite.com/product/100121380726824...</td>\n",
       "      <td>喪親之痛</td>\n",
       "      <td>悲傷</td>\n",
       "      <td>復原力</td>\n",
       "      <td>親人失去</td>\n",
       "      <td>悲傷修復</td>\n",
       "      <td>心理健康</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>675</th>\n",
       "      <td>淬鍊幸福, 剛剛好的回憶練習 (限量贈暖心陪伴藏書卡)</td>\n",
       "      <td>為什麼自己會突然情緒崩潰?從什麼時候開始,變得越來越少話?每當回憶起某件事時,就會止不住的落...</td>\n",
       "      <td>https://www.eslite.com/product/100120303926824...</td>\n",
       "      <td>創傷後壓力症候群</td>\n",
       "      <td>自我懷疑</td>\n",
       "      <td>內心傷痛</td>\n",
       "      <td>創傷癒後者</td>\n",
       "      <td>單親父母</td>\n",
       "      <td>成長經歷過困難的讀者</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>676</th>\n",
       "      <td>不是為了爭吵才跟你在一起: 如何在溝通中改善親密關係</td>\n",
       "      <td>為什麼開始親密無間的兩個人,會在關係中越走越遠、越來越疏離?外人對你們羨慕不已,但其實是假性...</td>\n",
       "      <td>https://www.eslite.com/product/100120106326824...</td>\n",
       "      <td>焦慮</td>\n",
       "      <td>疏離</td>\n",
       "      <td>衝突</td>\n",
       "      <td>兩性關係人士</td>\n",
       "      <td>婚姻治療師或專家</td>\n",
       "      <td>伴侶或夫妻</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>677 rows × 9 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "                                                  書名  \\\n",
       "0                                   這僅有一次的人生, 我不想說抱歉   \n",
       "1                       我只是想分手而已: 親密殺人, 被深愛的男人殺死的女人們   \n",
       "2                               輕鬆思考法: 培養靈活觀點的150個啟示   \n",
       "3      因為人類思維太僵化, 所以需要創新心理學: 心態革命, 大腦中的髮夾彎, 掀起你的思路風暴   \n",
       "4                                              人生心理學   \n",
       "..                                               ...   \n",
       "672                                 你想要的一切, 宇宙早已為你預備   \n",
       "673                        妄想的力量: 迷信、儀式感與過度樂觀的非理性心理學   \n",
       "674  悲傷復原力: 一位心理學專家, 也是位失去愛女的母親, 透過復原力心理學, 走過分離崩解的悲傷   \n",
       "675                      淬鍊幸福, 剛剛好的回憶練習 (限量贈暖心陪伴藏書卡)   \n",
       "676                       不是為了爭吵才跟你在一起: 如何在溝通中改善親密關係   \n",
       "\n",
       "                                                  內容簡介  \\\n",
       "0    你走太快了,容易迷路,要等靈魂跟上來,才能走更遠的路。那些你想要做成的事情,你做成了的事情,...   \n",
       "1    親密殺人不是約會暴力是整個社會必須全力阻止的連續殺人!只是想跟他分手的我,為何最後卻送了命?...   \n",
       "2    本書特色150則啟示點醒沉浮於忙碌生活的現代人!篇幅短小、內容精闢,1分鐘打開新思維!擁有不...   \n",
       "3    大腦中的髮夾彎,掀起你的思路風暴!從理性到感性,不同思考方式將會開啟新的視角、新的世界!逆向...   \n",
       "4    找出人生發展的路向從來都不容易,無論你是臨近畢業的大專生,或是已在職場上打滾了好些年正在瓶頸...   \n",
       "..                                                 ...   \n",
       "672  宇宙會把最好的獻給你。如果你願意放下自我限制的信念,全然信任這股奇妙的力量,豐盛的人生自然會...   \n",
       "673  妄想雖然可恥但是有用!亞馬遜讀者五星強推!最熱愛怪力亂神的美國心理學暢銷作家帶你重新認識幻想...   \n",
       "674  面對至親至愛的離去,如果悲傷難免,我們可以做些什麼,度過這場巨大風暴?紐約時報、華爾街日報,...   \n",
       "675  為什麼自己會突然情緒崩潰?從什麼時候開始,變得越來越少話?每當回憶起某件事時,就會止不住的落...   \n",
       "676  為什麼開始親密無間的兩個人,會在關係中越走越遠、越來越疏離?外人對你們羨慕不已,但其實是假性...   \n",
       "\n",
       "                                                   URL      形容詞1    形容詞2  \\\n",
       "0    https://www.eslite.com/product/100120106326824...      自我期許    自我反思   \n",
       "1    https://www.eslite.com/product/100120106326824...      心理創傷  暴力受暴經驗   \n",
       "2    https://www.eslite.com/product/100121372526824...        焦慮      孤獨   \n",
       "3    https://www.eslite.com/product/100122024826824...        焦慮      壓力   \n",
       "4    https://www.eslite.com/product/100121238026824...      生涯規劃    自我覺察   \n",
       "..                                                 ...       ...     ...   \n",
       "672  https://www.eslite.com/product/100120176426824...        困惑      壓力   \n",
       "673  https://www.eslite.com/product/100120106326824...        妄想    心理假象   \n",
       "674  https://www.eslite.com/product/100121380726824...      喪親之痛      悲傷   \n",
       "675  https://www.eslite.com/product/100120303926824...  創傷後壓力症候群    自我懷疑   \n",
       "676  https://www.eslite.com/product/100120106326824...        焦慮      疏離   \n",
       "\n",
       "     形容詞3          角色1             角色2           角色3  \n",
       "0    人生目標         自我提升            人生感悟          內心成長  \n",
       "1    感情困境        法律系學生           社會工作者       性別平權運動者  \n",
       "2      成長          職場人           旅行愛好者      追求自我成長的人  \n",
       "3      抑鬱  好奇心旺盛的思考愛好者  希望提高日常解決問題技巧的人  渴望提升創新思維能力的人  \n",
       "4    人生意義          大學生           職場工作者        心理學研究者  \n",
       "..    ...          ...             ...           ...  \n",
       "672    不滿        焦慮症患者         心理負荷過重者         靈性追求者  \n",
       "673    樂觀         心理學家         精神病患者家屬          普通大眾  \n",
       "674   復原力         親人失去            悲傷修復          心理健康  \n",
       "675  內心傷痛        創傷癒後者            單親父母    成長經歷過困難的讀者  \n",
       "676    衝突       兩性關係人士        婚姻治療師或專家         伴侶或夫妻  \n",
       "\n",
       "[677 rows x 9 columns]"
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df_bk"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b88bb194-7064-4dcb-8907-b392d8f1e82f",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}