Coool2 commited on
Commit
4dea40a
·
verified ·
1 Parent(s): 4e1bcbc

Update agent.py

Browse files
Files changed (1) hide show
  1. agent.py +18 -20
agent.py CHANGED
@@ -64,7 +64,7 @@ logging.basicConfig(level=logging.INFO)
64
  logging.getLogger("llama_index.core.agent").setLevel(logging.DEBUG)
65
  logging.getLogger("llama_index.llms").setLevel(logging.DEBUG)
66
 
67
- model_id = "mistralai/Mistral-7B-Instruct-v0.3"
68
  proj_llm = HuggingFaceLLM(
69
  model_name=model_id,
70
  tokenizer_name=model_id,
@@ -266,17 +266,28 @@ extract_url_tool = FunctionTool.from_defaults(
266
  )
267
  )
268
 
269
- # Créer un pipeline forcé read_and_parse → create_rag
 
 
 
 
 
 
 
 
 
 
 
270
  def create_forced_rag_pipeline():
271
  pipeline = QueryPipeline(verbose=True)
272
 
273
- # Ajouter les modules
274
  pipeline.add_modules({
275
- "read_and_parse": read_and_parse_tool,
276
- "create_rag": create_rag_tool,
277
  })
278
 
279
- # Forcer la liaison : read_and_parse → create_rag
280
  pipeline.add_link("read_and_parse", "create_rag")
281
 
282
  return pipeline
@@ -388,20 +399,7 @@ from llama_index.llms.huggingface import HuggingFaceLLM
388
  # --- 1. Initialize a dedicated LLM for Code Generation ---
389
  # It's good practice to use a model specifically fine-tuned for coding.
390
  # This model is loaded only once for efficiency.
391
- try:
392
- code_llm = HuggingFaceLLM(
393
- model_name="Qwen/Qwen2.5-Coder-3B",
394
- tokenizer_name="Qwen/Qwen2.5-Coder-3B",
395
- device_map="auto",
396
- model_kwargs={"torch_dtype": "auto"},
397
- # Set generation parameters for precise, non-creative code output
398
- generate_kwargs={"temperature": 0.1, "do_sample": False}
399
- )
400
- except Exception as e:
401
- print(f"Error initializing code generation model: {e}")
402
- print("Code generation tool will not be available.")
403
- code_llm = None
404
-
405
 
406
  def generate_python_code(query: str) -> str:
407
  """
 
64
  logging.getLogger("llama_index.core.agent").setLevel(logging.DEBUG)
65
  logging.getLogger("llama_index.llms").setLevel(logging.DEBUG)
66
 
67
+ model_id = "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8"
68
  proj_llm = HuggingFaceLLM(
69
  model_name=model_id,
70
  tokenizer_name=model_id,
 
266
  )
267
  )
268
 
269
+ from llama_index.core.query_pipeline import QueryPipeline, FnComponent
270
+
271
+ # Convertir vos fonctions en composants de pipeline
272
+ def read_and_parse_fn(input_path: str):
273
+ """Function compatible avec QueryPipeline"""
274
+ return read_and_parse_content(input_path)
275
+
276
+ def create_rag_fn(documents):
277
+ """Function compatible avec QueryPipeline"""
278
+ return create_rag_tool(documents)
279
+
280
+ # Créer le pipeline avec FnComponent
281
  def create_forced_rag_pipeline():
282
  pipeline = QueryPipeline(verbose=True)
283
 
284
+ # Utiliser FnComponent au lieu de FunctionTool
285
  pipeline.add_modules({
286
+ "read_and_parse": FnComponent(fn=read_and_parse_fn),
287
+ "create_rag": FnComponent(fn=create_rag_fn),
288
  })
289
 
290
+ # Forcer la liaison
291
  pipeline.add_link("read_and_parse", "create_rag")
292
 
293
  return pipeline
 
399
  # --- 1. Initialize a dedicated LLM for Code Generation ---
400
  # It's good practice to use a model specifically fine-tuned for coding.
401
  # This model is loaded only once for efficiency.
402
+ code_llm = proj_llm
 
 
 
 
 
 
 
 
 
 
 
 
 
403
 
404
  def generate_python_code(query: str) -> str:
405
  """