Coool2's picture
Update agent.py
adface3 verified
raw
history blame
19.3 kB
from llama_index.core.agent.workflow import FunctionAgent
from llama_index.core.tools import FunctionTool
from llama_index.core import VectorStoreIndex, Document
from llama_index.core.node_parser import SentenceWindowNodeParser, HierarchicalNodeParser
from llama_index.core.postprocessor import SentenceTransformerRerank
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.readers.file import PDFReader, DocxReader, CSVReader, ImageReader
import os
from typing import List, Dict, Any
from llama_index.readers.web import SimpleWebPageReader
from llama_index.core.tools.ondemand_loader_tool import OnDemandLoaderTool
from llama_index.tools.arxiv import ArxivToolSpec
import duckduckgo_search as ddg
import re
from llama_index.core.agent.workflow import ReActAgent
from llama_index.llms.gemini import Gemini
text_llm = Gemini(
model="models/gemini-2.5-flash-preview-05-20",
api_key=os.environ.get("GOOGLE_API_KEY")
)
multimodal_llm = text_llm
class EnhancedRAGQueryEngine:
def __init__(self, task_context: str = ""):
self.task_context = task_context
self.embed_model = HuggingFaceEmbedding("BAAI/bge-small-en-v1.5")
self.reranker = SentenceTransformerRerank(model="cross-encoder/ms-marco-MiniLM-L-2-v2", top_n=5)
self.readers = {
'.pdf': PDFReader(),
'.docx': DocxReader(),
'.doc': DocxReader(),
'.csv': CSVReader(),
'.txt': lambda file_path: [Document(text=open(file_path, 'r').read())],
'.jpg': ImageReader(),
'.jpeg': ImageReader(),
'.png': ImageReader()
}
self.sentence_window_parser = SentenceWindowNodeParser.from_defaults(
window_size=3,
window_metadata_key="window",
original_text_metadata_key="original_text"
)
self.hierarchical_parser = HierarchicalNodeParser.from_defaults(
chunk_sizes=[2048, 512, 128]
)
def load_and_process_documents(self, file_paths: List[str]) -> List[Document]:
documents = []
for file_path in file_paths:
file_ext = os.path.splitext(file_path)[1].lower()
try:
if file_ext in self.readers:
reader = self.readers[file_ext]
if callable(reader):
docs = reader(file_path)
else:
docs = reader.load_data(file=file_path)
# Add metadata to all documents
for doc in docs:
doc.metadata.update({
"file_path": file_path,
"file_type": file_ext[1:],
"task_context": self.task_context
})
documents.extend(docs)
except Exception as e:
# Fallback to text reading
try:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
documents.append(Document(
text=content,
metadata={"file_path": file_path, "file_type": "text", "error": str(e)}
))
except:
print(f"Failed to process {file_path}: {e}")
return documents
def create_advanced_index(self, documents: List[Document], use_hierarchical: bool = False) -> VectorStoreIndex:
if use_hierarchical or len(documents) > 10:
nodes = self.hierarchical_parser.get_nodes_from_documents(documents)
else:
nodes = self.sentence_window_parser.get_nodes_from_documents(documents)
index = VectorStoreIndex(
nodes,
embed_model=self.embed_model
)
return index
def create_context_aware_query_engine(self, index: VectorStoreIndex):
retriever = VectorIndexRetriever(
index=index,
similarity_top_k=10,
embed_model=self.embed_model
)
query_engine = RetrieverQueryEngine(
retriever=retriever,
node_postprocessors=[self.reranker],
llm=multimodal_llm
)
return query_engine
def comprehensive_rag_analysis(file_paths: List[str], query: str, task_context: str = "") -> str:
try:
rag_engine = EnhancedRAGQueryEngine(task_context)
documents = rag_engine.load_and_process_documents(file_paths)
if not documents:
return "No documents could be processed successfully."
total_text_length = sum(len(doc.text) for doc in documents)
use_hierarchical = total_text_length > 50000 or len(documents) > 5
index = rag_engine.create_advanced_index(documents, use_hierarchical)
query_engine = rag_engine.create_context_aware_query_engine(index)
enhanced_query = f"""
Task Context: {task_context}
Original Query: {query}
Please analyze the provided documents and answer the query with precise, factual information.
"""
response = query_engine.query(enhanced_query)
result = f"**RAG Analysis Results:**\n\n"
result += f"**Documents Processed:** {len(documents)}\n"
result += f"**Answer:**\n{response.response}\n\n"
return result
except Exception as e:
return f"RAG analysis failed: {str(e)}"
def cross_document_analysis(file_paths: List[str], query: str, task_context: str = "") -> str:
try:
rag_engine = EnhancedRAGQueryEngine(task_context)
all_documents = []
document_groups = {}
for file_path in file_paths:
docs = rag_engine.load_and_process_documents([file_path])
doc_key = os.path.basename(file_path)
document_groups[doc_key] = docs
for doc in docs:
doc.metadata.update({
"document_group": doc_key,
"total_documents": len(file_paths)
})
all_documents.extend(docs)
index = rag_engine.create_advanced_index(all_documents, use_hierarchical=True)
query_engine = rag_engine.create_context_aware_query_engine(index)
response = query_engine.query(f"Task: {task_context}\nQuery: {query}")
result = f"**Cross-Document Analysis:**\n"
result += f"**Documents:** {list(document_groups.keys())}\n"
result += f"**Answer:**\n{response.response}\n"
return result
except Exception as e:
return f"Cross-document analysis failed: {str(e)}"
# Create tools
enhanced_rag_tool = FunctionTool.from_defaults(
fn=comprehensive_rag_analysis,
name="Enhanced RAG Analysis",
description="Comprehensive document analysis using advanced RAG with hybrid search and context-aware processing"
)
cross_document_tool = FunctionTool.from_defaults(
fn=cross_document_analysis,
name="Cross-Document Analysis",
description="Advanced analysis across multiple documents with cross-referencing capabilities"
)
# Analysis Agent
analysis_agent = FunctionAgent(
name="AnalysisAgent",
description="Advanced multimodal analysis using enhanced RAG with hybrid search and cross-document capabilities",
system_prompt="""
You are an advanced analysis specialist with access to:
- Enhanced RAG with hybrid search and reranking
- Multi-format document processing (PDF, Word, CSV, images, text)
- Cross-document analysis and synthesis
- Context-aware query processing
Your capabilities:
1. Process multiple file types simultaneously
2. Perform semantic search across document collections
3. Cross-reference information between documents
4. Extract precise information with source attribution
5. Handle both text and visual content analysis
Always consider the GAIA task context and provide precise, well-sourced answers.
""",
llm=multimodal_llm,
tools=[enhanced_rag_tool, cross_document_tool],
)
class IntelligentSourceRouter:
def __init__(self):
# Initialize tools - only ArXiv and web search
self.arxiv_spec = ArxivToolSpec()
# Add web content loader
self.web_reader = SimpleWebPageReader()
# Create OnDemandLoaderTool for web content
self.web_loader_tool = OnDemandLoaderTool.from_defaults(
self.web_reader,
name="Web Content Loader",
description="Load and analyze web page content with intelligent chunking and search"
)
def web_search_fallback(self, query: str, max_results: int = 5) -> str:
try:
results = ddg.DDGS().text(query, max_results=max_results)
return "\n".join([f"{i}. **{r['title']}**\n URL: {r['href']}\n {r['body']}" for i, r in enumerate(results, 1)])
except Exception as e:
return f"Search failed: {str(e)}"
def extract_web_content(self, urls: List[str], query: str) -> str:
"""Extract and analyze content from web URLs"""
try:
content_results = []
for url in urls[:3]: # Limit to top 3 URLs
try:
result = self.web_loader_tool.call(
urls=[url],
query=f"Extract information relevant to: {query}"
)
content_results.append(f"**Content from {url}:**\n{result}")
except Exception as e:
content_results.append(f"**Failed to load {url}**: {str(e)}")
return "\n\n".join(content_results)
except Exception as e:
return f"Content extraction failed: {str(e)}"
def detect_intent_and_route(self, query: str) -> str:
# Simple LLM-based discrimination: scientific vs non-scientific
intent_prompt = f"""
Analyze this query and determine if it's scientific research or general information:
Query: "{query}"
Choose ONE source:
- arxiv: For scientific research, academic papers, technical studies, algorithms, experiments
- web_search: For all other information (current events, general facts, weather, how-to guides, etc.)
Respond with ONLY "arxiv" or "web_search".
"""
response = text_llm.complete(intent_prompt)
selected_source = response.text.strip().lower()
# Execute search and extract content
results = [f"**Query**: {query}", f"**Selected Source**: {selected_source}", "="*50]
try:
if selected_source == 'arxiv':
result = self.arxiv_spec.to_tool_list()[0].call(query=query, max_results=3)
results.append(f"**ArXiv Research:**\n{result}")
else: # Default to web_search for everything else
# Get search results
search_results = self.web_search_fallback(query, 5)
results.append(f"**Web Search Results:**\n{search_results}")
# Extract URLs and load content
urls = re.findall(r'URL: (https?://[^\s]+)', search_results)
if urls:
web_content = self.extract_web_content(urls, query)
results.append(f"**Extracted Web Content:**\n{web_content}")
except Exception as e:
results.append(f"**Search failed**: {str(e)}")
return "\n\n".join(results)
# Initialize router
intelligent_router = IntelligentSourceRouter()
# Create enhanced research tool
def enhanced_smart_research_tool(query: str, task_context: str = "", max_results: int = 5) -> str:
full_query = f"{query} {task_context}".strip()
return intelligent_router.detect_intent_and_route(full_query)
enhanced_research_tool_func = FunctionTool.from_defaults(
fn=enhanced_smart_research_tool,
name="Enhanced Research Tool",
description="Intelligent research tool that discriminates between scientific (ArXiv) and general (web) research with deep content extraction"
)
# Updated research agent
research_agent = FunctionAgent(
name="ResearchAgent",
description="Advanced research agent that automatically routes between scientific and general research sources",
system_prompt="""
You are an advanced research specialist that automatically discriminates between:
**Scientific Research** → ArXiv
- Academic papers, research studies
- Technical algorithms and methods
- Scientific experiments and theories
**General Research** → Web Search with Content Extraction
- Current events and news
- General factual information
- How-to guides and technical documentation
- Weather, locations, biographical info
You automatically:
1. **Route queries** to the most appropriate source
2. **Extract deep content** from web pages (not just snippets)
3. **Analyze and synthesize** information comprehensively
4. **Provide detailed answers** with source attribution
Always focus on extracting the most relevant information for the GAIA task.
""",
llm=text_llm,
tools=[enhanced_research_tool_func],
)
def execute_python_code(code: str) -> str:
try:
safe_globals = {
"__builtins__": {
"len": len, "str": str, "int": int, "float": float,
"list": list, "dict": dict, "sum": sum, "max": max, "min": min,
"round": round, "abs": abs, "sorted": sorted
},
"math": __import__("math"),
"datetime": __import__("datetime"),
"re": __import__("re")
}
exec_locals = {}
exec(code, safe_globals, exec_locals)
if 'result' in exec_locals:
return str(exec_locals['result'])
else:
return "Code executed successfully"
except Exception as e:
return f"Code execution failed: {str(e)}"
code_execution_tool = FunctionTool.from_defaults(
fn=execute_python_code,
name="Python Code Execution",
description="Execute Python code safely for calculations and data processing"
)
# Code Agent as ReActAgent
code_agent = ReActAgent(
name="CodeAgent",
description="Advanced calculations, data processing, and final answer synthesis using ReAct reasoning",
system_prompt="""
You are a coding and reasoning specialist using ReAct methodology.
For each task:
1. THINK: Analyze what needs to be calculated or processed
2. ACT: Execute appropriate code or calculations
3. OBSERVE: Review results and determine if more work is needed
4. REPEAT: Continue until you have the final answer
Always show your reasoning process clearly and provide exact answers as required by GAIA.
""",
llm=text_llm,
tools=[code_execution_tool],
)
# Créer des outils à partir des agents
def analysis_function(query: str, files=None):
ctx = Context(analysis_agent)
return analysis_agent.run(query, ctx=ctx)
def research_function(query: str):
ctx = Context(research_agent)
return research_agent.run(query, ctx=ctx)
def code_function(query: str):
ctx = Context(code_agent)
return code_agent.run(query, ctx=ctx)
analysis_tool = FunctionTool.from_defaults(
fn=analysis_function,
name="AnalysisAgent",
description="Advanced multimodal analysis using enhanced RAG"
)
research_tool = FunctionTool.from_defaults(
fn=research_function,
name="ResearchAgent",
description="Research agent for scientific and general research"
)
code_tool = FunctionTool.from_defaults(
fn=code_function,
name="CodeAgent",
description="Advanced calculations and data processing"
)
class EnhancedGAIAAgent:
def __init__(self):
print("Initializing Enhanced GAIA Agent...")
# Vérification du token HuggingFace
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
if not hf_token:
raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable is required")
# Agent coordinateur principal qui utilise les agents spécialisés comme tools
self.coordinator = ReActAgent(
name="GAIACoordinator",
description="Main GAIA coordinator that uses specialist agents as intelligent tools",
system_prompt="""
You are the main GAIA coordinator using ReAct reasoning methodology.
Your process:
1. THINK: Analyze the GAIA question thoroughly
2. ACT: Use your specialist tools IF RELEVANT
3. OBSERVE: Review results from specialist tools
4. THINK: Determine if you need more information or can provide final answer
5. ACT: Either use another tool or provide final precise answer
6. FORMAT: Ensure answer is EXACT GAIA format (number only, word only, etc.)
IMPORTANT: Use tools strategically - only when their specific expertise is needed.
For simple questions, you can answer directly without using any tools.
CRITICAL: Your final answer must be EXACT and CONCISE as required by GAIA format:
- For numbers: provide only the number (e.g., "42" or "3.14")
- For strings: provide only the exact string (e.g., "Paris" or "Einstein")
- For lists: use comma separation (e.g., "apple, banana, orange")
- NO explanations, NO additional text, ONLY the precise answer
""",
llm=text_llm,
tools=[analysis_tool, research_tool, code_tool]
)
async def solve_gaia_question(self, question_data: Dict[str, Any]) -> str:
question = question_data.get("Question", "")
task_id = question_data.get("task_id", "")
context_prompt = f"""
GAIA Task ID: {task_id}
Question: {question}
{f"Associated files: {question_data.get('file_name', '')}" if 'file_name' in question_data else 'No files provided'}
Instructions:
1. Analyze this GAIA question using ReAct reasoning
2. Use specialist tools ONLY when their specific expertise is needed
3. Provide a precise, exact answer in GAIA format
Begin your reasoning process:
"""
try:
from llama_index.core.workflow import Context
ctx = Context(self.coordinator)
response = await self.coordinator.run(ctx=ctx, input=context_prompt)
return str(response)
except Exception as e:
return f"Error processing question: {str(e)}"