|
|
|
import logging |
|
import os |
|
import re |
|
from typing import Dict, Any, List |
|
from urllib.parse import urlparse |
|
|
|
|
|
import requests |
|
import wandb |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
from llama_index.core import VectorStoreIndex, Document, Settings |
|
from llama_index.core.agent.workflow import FunctionAgent, ReActAgent, AgentStream |
|
from llama_index.core.callbacks.base import CallbackManager |
|
from llama_index.core.callbacks.llama_debug import LlamaDebugHandler |
|
from llama_index.core.node_parser import SentenceWindowNodeParser, HierarchicalNodeParser |
|
from llama_index.core.postprocessor import SentenceTransformerRerank |
|
from llama_index.core.query_engine import RetrieverQueryEngine |
|
from llama_index.core.retrievers import VectorIndexRetriever |
|
from llama_index.core.tools import FunctionTool |
|
from llama_index.core.workflow import Context |
|
|
|
|
|
from llama_index.callbacks.wandb import WandbCallbackHandler |
|
from llama_index.embeddings.huggingface import HuggingFaceEmbedding |
|
from llama_index.llms.huggingface import HuggingFaceLLM |
|
from llama_index.readers.assemblyai import AssemblyAIAudioTranscriptReader |
|
from llama_index.readers.file import PDFReader, DocxReader, CSVReader, ImageReader, PandasExcelReader |
|
from llama_index.readers.json import JSONReader |
|
from llama_index.readers.web import TrafilaturaWebReader |
|
from llama_index.readers.youtube_transcript import YoutubeTranscriptReader |
|
from llama_index.tools.arxiv import ArxivToolSpec |
|
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec |
|
|
|
|
|
from llama_index.readers.file import ( |
|
PDFReader, |
|
DocxReader, |
|
CSVReader, |
|
PandasExcelReader, |
|
ImageReader, |
|
) |
|
from typing import List, Union |
|
from llama_index.core import VectorStoreIndex, Document, Settings |
|
from llama_index.core.tools import QueryEngineTool |
|
from llama_index.core.node_parser import SentenceWindowNodeParser, HierarchicalNodeParser |
|
from llama_index.core.postprocessor import SentenceTransformerRerank |
|
from llama_index.core.query_engine import RetrieverQueryEngine |
|
from llama_index.core.query_pipeline import QueryPipeline |
|
|
|
|
|
wandb_callback = WandbCallbackHandler(run_args={"project": "gaia-llamaindex-agents"}) |
|
llama_debug = LlamaDebugHandler(print_trace_on_end=True) |
|
|
|
|
|
callback_manager = CallbackManager([ |
|
wandb_callback, |
|
llama_debug |
|
]) |
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logging.getLogger("llama_index.core.agent").setLevel(logging.DEBUG) |
|
logging.getLogger("llama_index.llms").setLevel(logging.DEBUG) |
|
|
|
model_id = "Qwen/Qwen2.5-7B-Instruct" |
|
proj_llm = HuggingFaceLLM( |
|
model_name=model_id, |
|
tokenizer_name=model_id, |
|
device_map="auto", |
|
model_kwargs={"torch_dtype": "auto"}, |
|
generate_kwargs={"temperature": 0.1, "top_p": 0.3} |
|
) |
|
|
|
embed_model = HuggingFaceEmbedding("BAAI/bge-small-en-v1.5") |
|
|
|
wandb.init(project="gaia-llamaindex-agents") |
|
wandb_callback = WandbCallbackHandler(run_args={"project": "gaia-llamaindex-agents"}) |
|
llama_debug = LlamaDebugHandler(print_trace_on_end=True) |
|
callback_manager = CallbackManager([wandb_callback, llama_debug]) |
|
|
|
Settings.llm = proj_llm |
|
Settings.embed_model = embed_model |
|
Settings.callback_manager = callback_manager |
|
|
|
|
|
def read_and_parse_content(input_path: str) -> List[Document]: |
|
""" |
|
Reads and parses content from a file path or URL into Document objects. |
|
It automatically detects the input type and uses the appropriate LlamaIndex reader. |
|
|
|
Args: |
|
input_path: A local file path or a web URL. |
|
|
|
Returns: |
|
A list of LlamaIndex Document objects with the extracted text. |
|
""" |
|
|
|
readers_map = { |
|
|
|
'.pdf': PDFReader(), |
|
'.docx': DocxReader(), |
|
'.doc': DocxReader(), |
|
|
|
'.csv': CSVReader(), |
|
'.json': JSONReader(), |
|
'.xlsx': PandasExcelReader(), |
|
|
|
'.jpg': ImageReader(), |
|
'.jpeg': ImageReader(), |
|
'.png': ImageReader(), |
|
'.mp3': AssemblyAIAudioTranscriptReader(input_path), |
|
} |
|
|
|
|
|
if input_path.startswith("http"): |
|
if "youtube" in urlparse(input_path): |
|
loader = YoutubeTranscriptReader() |
|
documents = loader.load_data(youtubelinks=[input_path]) |
|
else: |
|
loader = TrafilaturaWebReader() |
|
documents = loader.load_data(urls=[input_path]) |
|
|
|
|
|
else: |
|
if not os.path.exists(input_path): |
|
return [Document(text=f"Error: File not found at {input_path}")] |
|
|
|
file_extension = os.path.splitext(input_path)[1].lower() |
|
|
|
if file_extension in readers_map: |
|
loader = readers_map[file_extension] |
|
documents = loader.load_data(file=input_path) |
|
else: |
|
|
|
try: |
|
with open(input_path, 'r', encoding='utf-8') as f: |
|
content = f.read() |
|
documents = [Document(text=content, metadata={"source": input_path})] |
|
except Exception as e: |
|
return [Document(text=f"Error reading file as plain text: {e}")] |
|
|
|
|
|
for doc in documents: |
|
doc.metadata["source"] = input_path |
|
|
|
return documents |
|
|
|
|
|
read_and_parse_tool = FunctionTool.from_defaults( |
|
fn=read_and_parse_content, |
|
name="read_and_parse_tool", |
|
description=( |
|
"Use this tool to read and extract content from any given file or URL. " |
|
"It handles PDF, DOCX, CSV, JSON, XLSX, and image files, as well as web pages, " |
|
"YouTube videos (transcripts), and MP3 audio (transcripts). It also reads plain text " |
|
"from files like .py or .txt. The input MUST be a single valid file path or a URL." |
|
) |
|
) |
|
|
|
def create_rag_tool_fn(documents: List[Document], query: str = None) -> Union[QueryEngineTool, str]: |
|
""" |
|
Creates a RAG query engine tool from documents with advanced indexing and querying capabilities. |
|
|
|
This function implements a sophisticated RAG pipeline using hierarchical or sentence-window parsing |
|
depending on document count, vector indexing, and reranking for optimal information retrieval. |
|
|
|
Args: |
|
documents (List[Document]): A list of LlamaIndex Document objects from read_and_parse_tool. |
|
Must not be empty to create a valid RAG engine. |
|
query (str, optional): If provided, immediately queries the created RAG engine and returns |
|
the answer as a string. If None, returns the QueryEngineTool for later use. |
|
Defaults to None. |
|
|
|
Returns: |
|
Union[QueryEngineTool, str]: |
|
- QueryEngineTool: When query=None, returns a tool configured for agent use with |
|
advanced reranking and similarity search capabilities. |
|
- str: When query is provided, returns the direct answer from the RAG engine. |
|
- None: When documents list is empty. |
|
|
|
Examples: |
|
Create a RAG tool for later use: |
|
>>> rag_tool = create_rag_tool_fn(documents) |
|
|
|
Get immediate answer from documents: |
|
>>> answer = create_rag_tool_fn(documents, query="What is the main topic?") |
|
""" |
|
if not documents: |
|
return None |
|
|
|
|
|
|
|
hierarchical_parser = HierarchicalNodeParser.from_defaults(chunk_sizes=[2048, 512, 128]) |
|
sentence_window_parser = SentenceWindowNodeParser.from_defaults( |
|
window_size=3, |
|
window_metadata_key="window", |
|
original_text_metadata_key="original_text", |
|
) |
|
|
|
|
|
if len(documents) > 5: |
|
nodes = hierarchical_parser.get_nodes_from_documents(documents) |
|
else: |
|
nodes = sentence_window_parser.get_nodes_from_documents(documents) |
|
|
|
|
|
|
|
index = VectorStoreIndex(nodes) |
|
|
|
|
|
|
|
reranker = SentenceTransformerRerank( |
|
model="cross-encoder/ms-marco-MiniLM-L-2-v2", |
|
top_n=5 |
|
) |
|
|
|
query_engine = index.as_query_engine( |
|
similarity_top_k=10, |
|
node_postprocessors=[reranker], |
|
|
|
) |
|
|
|
|
|
rag_engine_tool = QueryEngineTool.from_defaults( |
|
query_engine=query_engine, |
|
name="rag_engine_tool", |
|
description=( |
|
"Use this tool to ask questions and query the content of documents that have already " |
|
"been loaded. This is your primary way to find answers from the provided context. " |
|
"The input is a natural language question about the documents' content." |
|
) |
|
) |
|
|
|
if query : |
|
result = rag_engine_tool.query_engine.query(query) |
|
return str(result) |
|
|
|
return rag_engine_tool |
|
|
|
create_rag_tool = FunctionTool.from_defaults( |
|
fn=create_rag_tool_fn, |
|
name="create_rag_tool", |
|
description=( |
|
"Use this tool to build a Retrieval Augmented Generation (RAG) engine from documents AND optionally query it immediately. " |
|
"Input: documents (list of documents or paths) and optional query parameter. " |
|
"If no query is provided: creates and returns a RAG query engine tool for later use. " |
|
"If query is provided: creates the RAG engine AND immediately returns the answer to your question. " |
|
"This dual-mode tool enables both RAG engine creation and direct question-answering in one step. " |
|
"Use with query parameter when you want immediate answers from documents, or without query to create a reusable engine." |
|
) |
|
) |
|
|
|
|
|
base_duckduckgo_tool = DuckDuckGoSearchToolSpec().to_tool_list()[1] |
|
|
|
|
|
def search_and_extract_top_url(query: str) -> str: |
|
""" |
|
Takes a search query, uses the base DuckDuckGo search tool to get results, |
|
and then parses the output to extract and return only the first URL. |
|
Args: |
|
query: The natural language search query. |
|
Returns: |
|
A string containing the first URL found, or an error message if none is found. |
|
""" |
|
|
|
search_results = base_duckduckgo_tool(query, max_results = 1) |
|
print(search_results) |
|
|
|
|
|
|
|
url_match = re.search(r"https?://\S+", str(search_results)) |
|
|
|
if url_match: |
|
return url_match.group(0)[:-2] |
|
else: |
|
return "No URL could be extracted from the search results." |
|
|
|
|
|
|
|
extract_url_tool = FunctionTool.from_defaults( |
|
fn=search_and_extract_top_url, |
|
name="extract_url_tool", |
|
description=( |
|
"Use this tool when you need to find a relevant URL to answer a question. It takes a search query as input and returns a single, relevant URL." |
|
) |
|
) |
|
|
|
from llama_index.core.query_pipeline import QueryPipeline, FnComponent |
|
|
|
|
|
def read_and_parse_fn(input_path: str): |
|
"""Function compatible avec QueryPipeline""" |
|
return read_and_parse_content(input_path) |
|
|
|
def create_rag_fn(documents, query = None): |
|
"""Function compatible avec QueryPipeline""" |
|
return create_rag_tool(documents, query) |
|
|
|
|
|
def create_forced_rag_pipeline(): |
|
pipeline = QueryPipeline(verbose=True) |
|
|
|
|
|
pipeline.add_modules({ |
|
"read_and_parse": FnComponent(fn=read_and_parse_fn), |
|
"create_rag": FnComponent(fn=create_rag_fn), |
|
}) |
|
|
|
|
|
pipeline.add_link("read_and_parse", "create_rag") |
|
|
|
return pipeline |
|
|
|
forced_rag_pipeline = create_forced_rag_pipeline() |
|
|
|
def forced_rag_pipeline_fn(input_path, query) : |
|
return forced_rag_pipeline.run(input_path,query) |
|
|
|
information_retrieval_tool = FunctionTool.from_defaults( |
|
fn=forced_rag_pipeline_fn, |
|
name="information_retrieval_tool", |
|
description=( |
|
"This tool is the PRIMARY and MOST EFFECTIVE method for answering user queries by extracting and retrieving information from URLs or documents. " |
|
"When given a document or URL, it AUTOMATICALLY processes the content and DIRECTLY ANSWERS your specific question or information need. " |
|
"The tool first uses read_and_parse to fully extract and parse content from web pages, PDFs, or document files. " |
|
"Then, it creates a powerful Retrieval Augmented Generation (RAG) query engine optimized for semantic search and precise information retrieval. " |
|
"Most importantly, it IMMEDIATELY applies this RAG engine to provide direct, accurate answers to your query, eliminating the need for manual searching. " |
|
"This tool is specifically designed to transform user questions into precise answers by leveraging advanced document understanding and query processing capabilities. " |
|
"Instead of manual page access or ad-hoc parsing, use this tool to get immediate, reliable answers to your information retrieval needs." |
|
) |
|
) |
|
|
|
safe_globals = { |
|
"__builtins__": { |
|
"len": len, "str": str, "int": int, "float": float, |
|
"list": list, "dict": dict, "sum": sum, "max": max, "min": min, |
|
"round": round, "abs": abs, "sorted": sorted, "enumerate": enumerate, |
|
"range": range, "zip": zip, "map": map, "filter": filter, |
|
"any": any, "all": all, "type": type, "isinstance": isinstance, |
|
"print": print, "open": open, "bool": bool, "set": set, "tuple": tuple |
|
}, |
|
|
|
"math": __import__("math"), |
|
"datetime": __import__("datetime"), |
|
"re": __import__("re"), |
|
"os": __import__("os"), |
|
"sys": __import__("sys"), |
|
"json": __import__("json"), |
|
"csv": __import__("csv"), |
|
"random": __import__("random"), |
|
"itertools": __import__("itertools"), |
|
"collections": __import__("collections"), |
|
"functools": __import__("functools"), |
|
|
|
|
|
"numpy": __import__("numpy"), |
|
"np": __import__("numpy"), |
|
"pandas": __import__("pandas"), |
|
"pd": __import__("pandas"), |
|
"scipy": __import__("scipy"), |
|
|
|
|
|
"matplotlib": __import__("matplotlib"), |
|
"plt": __import__("matplotlib.pyplot"), |
|
"seaborn": __import__("seaborn"), |
|
"sns": __import__("seaborn"), |
|
"plotly": __import__("plotly"), |
|
|
|
|
|
"sklearn": __import__("sklearn"), |
|
"xgboost": __import__("xgboost"), |
|
"lightgbm": __import__("lightgbm"), |
|
|
|
|
|
"statistics": __import__("statistics"), |
|
"statsmodels": __import__("statsmodels"), |
|
|
|
|
|
"PIL": __import__("PIL"), |
|
"cv2": __import__("cv2"), |
|
"skimage": __import__("skimage"), |
|
|
|
|
|
"pytz": __import__("pytz"), |
|
|
|
|
|
"tqdm": __import__("tqdm"), |
|
"pickle": __import__("pickle"), |
|
"gzip": __import__("gzip"), |
|
"base64": __import__("base64"), |
|
"hashlib": __import__("hashlib"), |
|
|
|
|
|
"sympy": __import__("sympy"), |
|
|
|
|
|
"llama-index" : __import__("llama_index") |
|
} |
|
|
|
def execute_python_code(code: str) -> str: |
|
try: |
|
exec_locals = {} |
|
exec(code, safe_globals, exec_locals) |
|
|
|
if 'result' in exec_locals: |
|
return str(exec_locals['result']) |
|
else: |
|
return "Code executed successfully" |
|
|
|
except Exception as e: |
|
return f"Code execution failed: {str(e)}" |
|
|
|
code_execution_tool = FunctionTool.from_defaults( |
|
fn=execute_python_code, |
|
name="Python Code Execution", |
|
description="Execute Python code safely for calculations and data processing" |
|
) |
|
|
|
import re |
|
from llama_index.core.tools import FunctionTool |
|
from llama_index.llms.huggingface import HuggingFaceLLM |
|
|
|
|
|
|
|
|
|
code_llm = HuggingFaceLLM( |
|
model_name="Qwen/Qwen2.5-Coder-3B", |
|
tokenizer_name="Qwen/Qwen2.5-Coder-3B", |
|
device_map="auto", |
|
model_kwargs={"torch_dtype": "auto"}, |
|
|
|
generate_kwargs={"temperature": 0.0, "do_sample": False} |
|
) |
|
|
|
def generate_python_code(query: str) -> str: |
|
""" |
|
Generates executable Python code based on a natural language query. |
|
|
|
Args: |
|
query: A detailed description of the desired functionality for the Python code. |
|
|
|
Returns: |
|
A string containing only the generated Python code, ready for execution. |
|
""" |
|
if not code_llm: |
|
return "Error: Code generation model is not available." |
|
|
|
|
|
|
|
prompt = f""" |
|
Your task is to generate ONLY the Python code for the following request. |
|
Do not include any explanations, introductory text, or markdown formatting like '```python'. |
|
The output must be a single, clean block of Python code. |
|
|
|
IMPORTANT LIMITATIONS: |
|
Your code will be executed in a restricted environment with limited functions and modules. |
|
{str(safe_globals)} |
|
Only use the functions and modules listed above. Do not use imports or other built-in functions. |
|
|
|
Request: "{query}" |
|
|
|
Python Code: |
|
""" |
|
|
|
|
|
response = code_llm.complete(prompt) |
|
raw_code = str(response) |
|
|
|
|
|
|
|
code_match = re.search(r"```(?:python)?\n(.*)```", raw_code, re.DOTALL) |
|
if code_match: |
|
|
|
return code_match.group(1).strip() |
|
else: |
|
|
|
return raw_code.strip() |
|
|
|
|
|
|
|
generate_code_tool = FunctionTool.from_defaults( |
|
fn=generate_python_code, |
|
name="generate_python_code_tool", |
|
description=( |
|
"Use this tool to generate executable Python code ONLY for mathematical calculations and problem solving. " |
|
"This tool is specifically designed for numerical computations, statistical analysis, algebraic operations, " |
|
"mathematical modeling, and scientific calculations." |
|
"DO NOT use this tool for document processing, text manipulation, or data parsing - use appropriate specialized tools instead." |
|
"The tool returns a string containing only the Python code for mathematical operations." |
|
) |
|
) |
|
|
|
def clean_response(response: str) -> str: |
|
"""Clean response by removing common prefixes""" |
|
response_clean = response.strip() |
|
prefixes_to_remove = [ |
|
"FINAL ANSWER:", "Answer:", "The answer is:", |
|
"Based on my analysis,", "After reviewing,", |
|
"The result is:", "Final result:", "According to", |
|
"In conclusion,", "Therefore,", "Thus," |
|
] |
|
|
|
for prefix in prefixes_to_remove: |
|
if response_clean.startswith(prefix): |
|
response_clean = response_clean[len(prefix):].strip() |
|
|
|
return response_clean |
|
|
|
def llm_reformat(response: str, question: str) -> str: |
|
"""Use LLM to reformat the response according to GAIA requirements""" |
|
|
|
format_prompt = f"""Extract the exact answer from the response below. Follow GAIA formatting rules strictly. |
|
|
|
GAIA Format Rules: |
|
- ONLY the precise answer, no explanations |
|
- No prefixes like "Answer:", "The result is:", etc. |
|
- For numbers: just the number (e.g., "156", "3.14e+8") |
|
- For names: just the name (e.g., "Martinez", "Sarah") |
|
- For lists: comma-separated (e.g., "C++, Java, Python") |
|
- For country codes: just the code (e.g., "FRA", "US") |
|
- For yes/no: just "Yes" or "No" |
|
|
|
Examples: |
|
Question: "How many papers were published?" |
|
Response: "The analysis shows 156 papers were published in total." |
|
Answer: 156 |
|
|
|
Question: "What is the last name of the developer?" |
|
Response: "The developer mentioned is Dr. Sarah Martinez from the AI team." |
|
Answer: Martinez |
|
|
|
Question: "List programming languages, alphabetized:" |
|
Response: "The languages mentioned are Python, Java, and C++. Alphabetized: C++, Java, Python" |
|
Answer: C++, Java, Python |
|
|
|
Now extract the exact answer: |
|
Question: {question} |
|
Response: {response} |
|
Answer:""" |
|
|
|
try: |
|
|
|
formatting_response = proj_llm.complete(format_prompt) |
|
answer = str(formatting_response).strip() |
|
|
|
|
|
if "Answer:" in answer: |
|
answer = answer.split("Answer:")[-1].strip() |
|
|
|
return answer |
|
except Exception as e: |
|
print(f"LLM reformatting failed: {e}") |
|
return response |
|
|
|
def final_answer_tool(agent_response: str, question: str) -> str: |
|
""" |
|
Simplified final answer tool using only LLM reformatting. |
|
|
|
Args: |
|
agent_response: The raw response from agent reasoning |
|
question: The original question for context |
|
|
|
Returns: |
|
Exact answer in GAIA format |
|
""" |
|
|
|
|
|
cleaned_response = clean_response(agent_response) |
|
|
|
|
|
formatted_answer = llm_reformat(cleaned_response, question) |
|
|
|
print(f"Original response cleaned: {cleaned_response[:100]}...") |
|
print(f"LLM formatted answer: {formatted_answer}") |
|
|
|
return formatted_answer |
|
|
|
|
|
final_answer_function_tool = FunctionTool.from_defaults( |
|
fn=final_answer_tool, |
|
name="final_answer_tool", |
|
description=( |
|
"Use this tool to format the final answer according to GAIA requirements. " |
|
"Input the agent's response and the original question to get properly formatted output." |
|
) |
|
) |
|
|
|
class EnhancedGAIAAgent: |
|
def __init__(self): |
|
print("Initializing Enhanced GAIA Agent...") |
|
|
|
|
|
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN") |
|
if not hf_token: |
|
print("Warning: HUGGINGFACEHUB_API_TOKEN not found, some features may not work") |
|
|
|
|
|
self.available_tools = [ |
|
extract_url_tool, |
|
information_retrieval_tool, |
|
code_execution_tool, |
|
generate_code_tool, |
|
] |
|
|
|
|
|
self.coordinator = ReActAgent( |
|
name="GAIACoordinator", |
|
system_prompt=""" |
|
You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string. |
|
""", |
|
llm=proj_llm, |
|
tools=self.available_tools, |
|
max_steps=15, |
|
verbose=True, |
|
callback_manager=callback_manager, |
|
) |
|
|
|
|
|
def download_gaia_file(self, task_id: str, api_url: str = "https://agents-course-unit4-scoring.hf.space") -> str: |
|
"""Download file associated with task_id""" |
|
try: |
|
response = requests.get(f"{api_url}/files/{task_id}", timeout=30) |
|
response.raise_for_status() |
|
|
|
filename = f"task_{task_id}_file" |
|
with open(filename, 'wb') as f: |
|
f.write(response.content) |
|
return filename |
|
except Exception as e: |
|
print(f"Failed to download file for task {task_id}: {e}") |
|
return None |
|
|
|
async def solve_gaia_question(self, question_data: Dict[str, Any]) -> str: |
|
""" |
|
Solve GAIA question with enhanced validation and reformatting |
|
""" |
|
question = question_data.get("Question", "") |
|
task_id = question_data.get("task_id", "") |
|
|
|
|
|
file_path = None |
|
if task_id: |
|
try: |
|
file_path = self.download_gaia_file(task_id) |
|
if file_path: |
|
documents = read_and_parse_content(file_path) |
|
except Exception as e: |
|
print(f"Failed to download/process file for task {task_id}: {e}") |
|
|
|
|
|
context_prompt = f""" |
|
GAIA Task ID: {task_id} |
|
Question: {question} |
|
{f'File available: {file_path}' if file_path else 'No additional files'} |
|
""" |
|
|
|
try: |
|
ctx = Context(self.coordinator) |
|
print("=== AGENT REASONING STEPS ===") |
|
|
|
handler = self.coordinator.run(ctx=ctx, user_msg=context_prompt) |
|
|
|
full_response = "" |
|
async for event in handler.stream_events(): |
|
if isinstance(event, AgentStream): |
|
print(event.delta, end="", flush=True) |
|
full_response += event.delta |
|
|
|
final_response = await handler |
|
print("\n=== END REASONING ===") |
|
|
|
|
|
final_answer = str(final_response).strip() |
|
|
|
print(f"Final GAIA formatted answer: {final_answer}") |
|
return final_answer |
|
|
|
except Exception as e: |
|
error_msg = f"Error processing question: {str(e)}" |
|
print(error_msg) |
|
return error_msg |