File size: 19,626 Bytes
6395478 8198856 6395478 7e8c870 6395478 2112ee7 6395478 77eaebf 6395478 77eaebf 6395478 77eaebf 6395478 2112ee7 77eaebf 2112ee7 6395478 2112ee7 6395478 2112ee7 6395478 77eaebf 6395478 3c271e0 e1fe6bb 3c271e0 77eaebf 3c271e0 e1fe6bb 3c271e0 e1fe6bb 3c271e0 e1fe6bb 77eaebf 3c271e0 77eaebf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
from llama_index.core.agent.workflow import FunctionAgent
from llama_index.core.tools import FunctionTool
from llama_index.core import VectorStoreIndex, Document
from llama_index.core.node_parser import SentenceWindowNodeParser, HierarchicalNodeParser
from llama_index.core.postprocessor import SentenceTransformerRerank
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.readers.file import PDFReader, DocxReader, CSVReader, ImageReader
import os
from typing import List, Dict, Any
from llama_index.readers.web import SimpleWebPageReader
from llama_index.core.tools.ondemand_loader_tool import OnDemandLoaderTool
from llama_index.tools.arxiv import ArxivToolSpec
import duckduckgo_search as ddg
import re
from llama_index.core.agent.workflow import ReActAgent
# LLM definitions
multimodal_llm = HuggingFaceInferenceAPI(
model_name="microsoft/Phi-3.5-vision-instruct",
token=os.getenv("HUGGINGFACEHUB_API_TOKEN"),
)
# Replace your current text_llm with:
text_llm = HuggingFaceInferenceAPI(
model_name="Qwen/Qwen2.5-72B-Instruct",
token=os.getenv("HUGGINGFACEHUB_API_TOKEN"),
)
class EnhancedRAGQueryEngine:
def __init__(self, task_context: str = ""):
self.task_context = task_context
self.embed_model = HuggingFaceEmbedding("BAAI/bge-small-en-v1.5")
self.reranker = SentenceTransformerRerank(model="cross-encoder/ms-marco-MiniLM-L-2-v2", top_n=5)
self.readers = {
'.pdf': PDFReader(),
'.docx': DocxReader(),
'.doc': DocxReader(),
'.csv': CSVReader(),
'.txt': lambda file_path: [Document(text=open(file_path, 'r').read())],
'.jpg': ImageReader(),
'.jpeg': ImageReader(),
'.png': ImageReader()
}
self.sentence_window_parser = SentenceWindowNodeParser.from_defaults(
window_size=3,
window_metadata_key="window",
original_text_metadata_key="original_text"
)
self.hierarchical_parser = HierarchicalNodeParser.from_defaults(
chunk_sizes=[2048, 512, 128]
)
def load_and_process_documents(self, file_paths: List[str]) -> List[Document]:
documents = []
for file_path in file_paths:
file_ext = os.path.splitext(file_path)[1].lower()
try:
if file_ext in self.readers:
reader = self.readers[file_ext]
if callable(reader):
docs = reader(file_path)
else:
docs = reader.load_data(file=file_path)
# Add metadata to all documents
for doc in docs:
doc.metadata.update({
"file_path": file_path,
"file_type": file_ext[1:],
"task_context": self.task_context
})
documents.extend(docs)
except Exception as e:
# Fallback to text reading
try:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
documents.append(Document(
text=content,
metadata={"file_path": file_path, "file_type": "text", "error": str(e)}
))
except:
print(f"Failed to process {file_path}: {e}")
return documents
def create_advanced_index(self, documents: List[Document], use_hierarchical: bool = False) -> VectorStoreIndex:
if use_hierarchical or len(documents) > 10:
nodes = self.hierarchical_parser.get_nodes_from_documents(documents)
else:
nodes = self.sentence_window_parser.get_nodes_from_documents(documents)
index = VectorStoreIndex(
nodes,
embed_model=self.embed_model
)
return index
def create_context_aware_query_engine(self, index: VectorStoreIndex):
retriever = VectorIndexRetriever(
index=index,
similarity_top_k=10,
embed_model=self.embed_model
)
query_engine = RetrieverQueryEngine(
retriever=retriever,
node_postprocessors=[self.reranker],
llm=multimodal_llm
)
return query_engine
def comprehensive_rag_analysis(file_paths: List[str], query: str, task_context: str = "") -> str:
try:
rag_engine = EnhancedRAGQueryEngine(task_context)
documents = rag_engine.load_and_process_documents(file_paths)
if not documents:
return "No documents could be processed successfully."
total_text_length = sum(len(doc.text) for doc in documents)
use_hierarchical = total_text_length > 50000 or len(documents) > 5
index = rag_engine.create_advanced_index(documents, use_hierarchical)
query_engine = rag_engine.create_context_aware_query_engine(index)
enhanced_query = f"""
Task Context: {task_context}
Original Query: {query}
Please analyze the provided documents and answer the query with precise, factual information.
"""
response = query_engine.query(enhanced_query)
result = f"**RAG Analysis Results:**\n\n"
result += f"**Documents Processed:** {len(documents)}\n"
result += f"**Answer:**\n{response.response}\n\n"
return result
except Exception as e:
return f"RAG analysis failed: {str(e)}"
def cross_document_analysis(file_paths: List[str], query: str, task_context: str = "") -> str:
try:
rag_engine = EnhancedRAGQueryEngine(task_context)
all_documents = []
document_groups = {}
for file_path in file_paths:
docs = rag_engine.load_and_process_documents([file_path])
doc_key = os.path.basename(file_path)
document_groups[doc_key] = docs
for doc in docs:
doc.metadata.update({
"document_group": doc_key,
"total_documents": len(file_paths)
})
all_documents.extend(docs)
index = rag_engine.create_advanced_index(all_documents, use_hierarchical=True)
query_engine = rag_engine.create_context_aware_query_engine(index)
response = query_engine.query(f"Task: {task_context}\nQuery: {query}")
result = f"**Cross-Document Analysis:**\n"
result += f"**Documents:** {list(document_groups.keys())}\n"
result += f"**Answer:**\n{response.response}\n"
return result
except Exception as e:
return f"Cross-document analysis failed: {str(e)}"
# Create tools
enhanced_rag_tool = FunctionTool.from_defaults(
fn=comprehensive_rag_analysis,
name="Enhanced RAG Analysis",
description="Comprehensive document analysis using advanced RAG with hybrid search and context-aware processing"
)
cross_document_tool = FunctionTool.from_defaults(
fn=cross_document_analysis,
name="Cross-Document Analysis",
description="Advanced analysis across multiple documents with cross-referencing capabilities"
)
# Analysis Agent
analysis_agent = FunctionAgent(
name="AnalysisAgent",
description="Advanced multimodal analysis using enhanced RAG with hybrid search and cross-document capabilities",
system_prompt="""
You are an advanced analysis specialist with access to:
- Enhanced RAG with hybrid search and reranking
- Multi-format document processing (PDF, Word, CSV, images, text)
- Cross-document analysis and synthesis
- Context-aware query processing
Your capabilities:
1. Process multiple file types simultaneously
2. Perform semantic search across document collections
3. Cross-reference information between documents
4. Extract precise information with source attribution
5. Handle both text and visual content analysis
Always consider the GAIA task context and provide precise, well-sourced answers.
""",
llm=multimodal_llm,
tools=[enhanced_rag_tool, cross_document_tool],
can_handoff_to=["CodeAgent", "ResearchAgent"]
)
class IntelligentSourceRouter:
def __init__(self):
# Initialize tools - only ArXiv and web search
self.arxiv_spec = ArxivToolSpec()
# Add web content loader
self.web_reader = SimpleWebPageReader()
# Create OnDemandLoaderTool for web content
self.web_loader_tool = OnDemandLoaderTool.from_defaults(
self.web_reader,
name="Web Content Loader",
description="Load and analyze web page content with intelligent chunking and search"
)
def web_search_fallback(self, query: str, max_results: int = 5) -> str:
try:
results = ddg.DDGS().text(query, max_results=max_results)
return "\n".join([f"{i}. **{r['title']}**\n URL: {r['href']}\n {r['body']}" for i, r in enumerate(results, 1)])
except Exception as e:
return f"Search failed: {str(e)}"
def extract_web_content(self, urls: List[str], query: str) -> str:
"""Extract and analyze content from web URLs"""
try:
content_results = []
for url in urls[:3]: # Limit to top 3 URLs
try:
result = self.web_loader_tool.call(
urls=[url],
query=f"Extract information relevant to: {query}"
)
content_results.append(f"**Content from {url}:**\n{result}")
except Exception as e:
content_results.append(f"**Failed to load {url}**: {str(e)}")
return "\n\n".join(content_results)
except Exception as e:
return f"Content extraction failed: {str(e)}"
def detect_intent_and_route(self, query: str) -> str:
# Simple LLM-based discrimination: scientific vs non-scientific
intent_prompt = f"""
Analyze this query and determine if it's scientific research or general information:
Query: "{query}"
Choose ONE source:
- arxiv: For scientific research, academic papers, technical studies, algorithms, experiments
- web_search: For all other information (current events, general facts, weather, how-to guides, etc.)
Respond with ONLY "arxiv" or "web_search".
"""
response = text_llm.complete(intent_prompt)
selected_source = response.text.strip().lower()
# Execute search and extract content
results = [f"**Query**: {query}", f"**Selected Source**: {selected_source}", "="*50]
try:
if selected_source == 'arxiv':
result = self.arxiv_spec.to_tool_list()[0].call(query=query, max_results=3)
results.append(f"**ArXiv Research:**\n{result}")
else: # Default to web_search for everything else
# Get search results
search_results = self.web_search_fallback(query, 5)
results.append(f"**Web Search Results:**\n{search_results}")
# Extract URLs and load content
urls = re.findall(r'URL: (https?://[^\s]+)', search_results)
if urls:
web_content = self.extract_web_content(urls, query)
results.append(f"**Extracted Web Content:**\n{web_content}")
except Exception as e:
results.append(f"**Search failed**: {str(e)}")
return "\n\n".join(results)
# Initialize router
intelligent_router = IntelligentSourceRouter()
# Create enhanced research tool
def enhanced_smart_research_tool(query: str, task_context: str = "", max_results: int = 5) -> str:
full_query = f"{query} {task_context}".strip()
return intelligent_router.detect_intent_and_route(full_query)
enhanced_research_tool_func = FunctionTool.from_defaults(
fn=enhanced_smart_research_tool,
name="Enhanced Research Tool",
description="Intelligent research tool that discriminates between scientific (ArXiv) and general (web) research with deep content extraction"
)
# Updated research agent
research_agent = FunctionAgent(
name="ResearchAgent",
description="Advanced research agent that automatically routes between scientific and general research sources",
system_prompt="""
You are an advanced research specialist that automatically discriminates between:
**Scientific Research** → ArXiv
- Academic papers, research studies
- Technical algorithms and methods
- Scientific experiments and theories
**General Research** → Web Search with Content Extraction
- Current events and news
- General factual information
- How-to guides and technical documentation
- Weather, locations, biographical info
You automatically:
1. **Route queries** to the most appropriate source
2. **Extract deep content** from web pages (not just snippets)
3. **Analyze and synthesize** information comprehensively
4. **Provide detailed answers** with source attribution
Always focus on extracting the most relevant information for the GAIA task.
""",
llm=text_llm,
tools=[enhanced_research_tool_func],
can_handoff_to=["AnalysisAgent", "CodeAgent"]
)
def execute_python_code(code: str) -> str:
try:
safe_globals = {
"__builtins__": {
"len": len, "str": str, "int": int, "float": float,
"list": list, "dict": dict, "sum": sum, "max": max, "min": min,
"round": round, "abs": abs, "sorted": sorted
},
"math": __import__("math"),
"datetime": __import__("datetime"),
"re": __import__("re")
}
exec_locals = {}
exec(code, safe_globals, exec_locals)
if 'result' in exec_locals:
return str(exec_locals['result'])
else:
return "Code executed successfully"
except Exception as e:
return f"Code execution failed: {str(e)}"
code_execution_tool = FunctionTool.from_defaults(
fn=execute_python_code,
name="Python Code Execution",
description="Execute Python code safely for calculations and data processing"
)
# Code Agent as ReActAgent
code_agent = ReActAgent(
name="CodeAgent",
description="Advanced calculations, data processing, and final answer synthesis using ReAct reasoning",
system_prompt="""
You are a coding and reasoning specialist using ReAct methodology.
For each task:
1. THINK: Analyze what needs to be calculated or processed
2. ACT: Execute appropriate code or calculations
3. OBSERVE: Review results and determine if more work is needed
4. REPEAT: Continue until you have the final answer
Always show your reasoning process clearly and provide exact answers as required by GAIA.
""",
llm=text_llm,
tools=[code_execution_tool],
can_handoff_to=["ResearchAgent", "AnalysisAgent"]
)
# Créer des outils à partir des agents
analysis_tool = FunctionTool.from_defaults(
fn=lambda query, files=None: analysis_agent.chat(query),
name="AnalysisAgent",
description="Advanced multimodal analysis using enhanced RAG"
)
research_tool = FunctionTool.from_defaults(
fn=lambda query: research_agent.chat(query),
name="ResearchAgent",
description="Research agent for scientific and general research"
)
code_tool = FunctionTool.from_defaults(
fn=lambda query: code_agent.chat(query),
name="CodeAgent",
description="Advanced calculations and data processing"
)
class EnhancedGAIAAgent:
def __init__(self):
print("Initializing Enhanced GAIA Agent...")
# Vérification du token HuggingFace
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
if not hf_token:
raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable is required")
# Agent coordinateur principal qui utilise les agents spécialisés comme tools
self.coordinator = ReActAgent(
name="GAIACoordinator",
description="Main GAIA coordinator that uses specialist agents as intelligent tools",
system_prompt="""
You are the main GAIA coordinator using ReAct reasoning methodology.
Your process:
1. THINK: Analyze the GAIA question thoroughly
2. ACT: Use your specialist tools IF RELEVANT
3. OBSERVE: Review results from specialist tools
4. THINK: Determine if you need more information or can provide final answer
5. ACT: Either use another tool or provide final precise answer
6. FORMAT: Ensure answer is EXACT GAIA format (number only, word only, etc.)
IMPORTANT: Use tools strategically - only when their specific expertise is needed.
For simple questions, you can answer directly without using any tools.
CRITICAL: Your final answer must be EXACT and CONCISE as required by GAIA format:
- For numbers: provide only the number (e.g., "42" or "3.14")
- For strings: provide only the exact string (e.g., "Paris" or "Einstein")
- For lists: use comma separation (e.g., "apple, banana, orange")
- NO explanations, NO additional text, ONLY the precise answer
""",
llm=text_llm,
tools=[analysis_tool, research_tool, code_tool]
)
def solve_gaia_question(self, question_data: Dict[str, Any]) -> str:
question = question_data.get("Question", "")
task_id = question_data.get("task_id", "")
context_prompt = f"""
GAIA Task ID: {task_id}
Question: {question}
{f"Associated files: {question_data.get('file_name', '')}" if 'file_name' in question_data else 'No files provided'}
Instructions:
1. Analyze this GAIA question using ReAct reasoning
2. Use specialist tools ONLY when their specific expertise is needed
3. Provide a precise, exact answer in GAIA format
Begin your reasoning process:
"""
try:
import asyncio
from llama_index.core.workflow import Context
# Créer le contexte
ctx = Context(self.coordinator)
# Fonction asynchrone pour exécuter l'agent
async def run_agent():
response = await self.coordinator.run(ctx=ctx, input=context_prompt)
return response
# Exécuter de manière asynchrone
response = asyncio.run(run_agent())
return str(response)
except Exception as e:
return f"Error processing question: {str(e)}"
|