File size: 28,344 Bytes
6395478
 
 
 
 
 
 
 
 
 
 
7e8c870
1d035ba
7e8c870
 
e108f99
 
b3564a4
 
370954a
65390be
e108f99
ad260e4
87d5798
5e30500
3ae963b
ad260e4
65390be
1d635fd
65390be
 
 
 
 
 
1d635fd
3ae963b
 
 
1d635fd
95e0d33
87d5798
 
 
 
 
b85f2cf
610ce11
 
e6723aa
 
e108f99
 
 
 
 
fa9bd8d
c4be662
 
e108f99
6395478
 
 
 
e6723aa
6395478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4be662
6395478
 
 
 
 
 
 
 
 
 
 
 
 
 
c4be662
6395478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
610ce11
6395478
1ae9999
 
6395478
 
 
 
5adab1e
 
6242081
5adab1e
6aee14a
5adab1e
6395478
 
 
 
 
 
 
 
0c9e128
6395478
5adab1e
6395478
 
 
6242081
6395478
5adab1e
6242081
5adab1e
 
 
 
 
 
 
 
 
6395478
 
5adab1e
 
6395478
 
 
 
6242081
6395478
6242081
6395478
3cbf586
6395478
5adab1e
80ab86f
5adab1e
80ab86f
5adab1e
 
 
 
 
 
 
 
 
 
 
6395478
 
b038c33
 
797be04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6a28d0
 
 
 
 
 
 
b038c33
 
 
 
 
 
 
 
 
 
 
 
6395478
1d635fd
6395478
1d635fd
 
 
 
 
 
 
 
 
 
 
 
 
 
b038c33
 
1d635fd
 
 
 
 
 
 
6395478
b038c33
 
1d635fd
 
 
6395478
 
30f5a8f
 
 
 
 
 
 
 
 
2112ee7
4f05e66
2112ee7
80ab86f
5adab1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2112ee7
 
 
4f05e66
2112ee7
80ab86f
5adab1e
1d635fd
 
 
 
 
 
5adab1e
1d635fd
 
 
 
 
 
 
5adab1e
1d635fd
5adab1e
1d635fd
2112ee7
 
6395478
 
77eaebf
6395478
77eaebf
 
 
 
1d635fd
77eaebf
 
 
6f11d78
6395478
77eaebf
6f11d78
 
6395478
0e0ac87
6f11d78
 
 
6395478
0e0ac87
6f11d78
 
 
 
0e0ac87
6f11d78
 
 
1ae9999
6f11d78
 
 
 
 
 
 
 
 
610ce11
3cbf586
6f11d78
1d635fd
 
6f11d78
6395478
6c51afa
fa0097a
c0ddcb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e30500
 
 
 
c0ddcb5
 
 
 
 
 
5e30500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adface3
0e0ac87
 
 
 
 
 
 
 
 
 
 
 
 
 
6c51afa
0e0ac87
 
 
 
6c51afa
0e0ac87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
from llama_index.core.agent.workflow import FunctionAgent
from llama_index.core.tools import FunctionTool
from llama_index.core import VectorStoreIndex, Document
from llama_index.core.node_parser import SentenceWindowNodeParser, HierarchicalNodeParser
from llama_index.core.postprocessor import SentenceTransformerRerank
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.readers.file import PDFReader, DocxReader, CSVReader, ImageReader
import os
from typing import List, Dict, Any
from llama_index.tools.arxiv import ArxivToolSpec
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec
import re
from llama_index.core.agent.workflow import ReActAgent
import wandb
from llama_index.callbacks.wandb import WandbCallbackHandler
from llama_index.core.callbacks.base import CallbackManager
from llama_index.core.callbacks.llama_debug import LlamaDebugHandler
from llama_index.core import Settings
from llama_index.callbacks.wandb import WandbCallbackHandler

from transformers import AutoModelForCausalLM, AutoTokenizer
from llama_index.llms.huggingface import HuggingFaceLLM
import requests
import logging

wandb_callback = WandbCallbackHandler(run_args={"project": "gaia-llamaindex-agents"})
llama_debug = LlamaDebugHandler(print_trace_on_end=True)

# Comprehensive callback manager
callback_manager = CallbackManager([
    wandb_callback,     # For W&B tracking
    llama_debug        # For general debugging
])

logging.basicConfig(level=logging.INFO)
logging.getLogger("llama_index.core.agent").setLevel(logging.DEBUG)
logging.getLogger("llama_index.llms").setLevel(logging.DEBUG)

model_id = "Qwen/Qwen2.5-7B-Instruct" 
proj_llm = HuggingFaceLLM(
    model_name=model_id,
    tokenizer_name=model_id,
    device_map="auto",           # will use GPU if available
    model_kwargs={"torch_dtype": "auto"},
    generate_kwargs={"temperature": 0.1, "top_p": 0.3}  # More focused
)

embed_model = HuggingFaceEmbedding("BAAI/bge-small-en-v1.5")

wandb.init(project="gaia-llamaindex-agents")  # Choisis ton nom de projet
wandb_callback = WandbCallbackHandler(run_args={"project": "gaia-llamaindex-agents"})
llama_debug = LlamaDebugHandler(print_trace_on_end=True)
callback_manager = CallbackManager([wandb_callback, llama_debug])

Settings.llm = proj_llm
Settings.embed_model = embed_model
Settings.callback_manager = callback_manager


class EnhancedRAGQueryEngine:
    def __init__(self, task_context: str = ""):
        self.task_context = task_context
        self.embed_model = embed_model
        self.reranker = SentenceTransformerRerank(model="cross-encoder/ms-marco-MiniLM-L-2-v2", top_n=5)
        
        self.readers = {
            '.pdf': PDFReader(),
            '.docx': DocxReader(),
            '.doc': DocxReader(),
            '.csv': CSVReader(),
            '.txt': lambda file_path: [Document(text=open(file_path, 'r').read())],
            '.jpg': ImageReader(),
            '.jpeg': ImageReader(),
            '.png': ImageReader()
        }
        
        self.sentence_window_parser = SentenceWindowNodeParser.from_defaults(
            window_size=3,
            window_metadata_key="window",
            original_text_metadata_key="original_text"
        )
        
        self.hierarchical_parser = HierarchicalNodeParser.from_defaults(
            chunk_sizes=[2048, 512, 128]
        )
    
    def load_and_process_documents(self, file_paths: List[str]) -> List[Document]:
        documents = []
        
        for file_path in file_paths:
            file_ext = os.path.splitext(file_path)[1].lower()
            
            try:
                if file_ext in self.readers:
                    reader = self.readers[file_ext]
                    if callable(reader):
                        docs = reader(file_path)
                    else:
                        docs = reader.load_data(file=file_path)
                    
                    # Add metadata to all documents
                    for doc in docs:
                        doc.metadata.update({
                            "file_path": file_path,
                            "file_type": file_ext[1:],
                            "task_context": self.task_context
                        })
                    documents.extend(docs)
                        
            except Exception as e:
                # Fallback to text reading
                try:
                    with open(file_path, 'r', encoding='utf-8') as f:
                        content = f.read()
                    documents.append(Document(
                        text=content,
                        metadata={"file_path": file_path, "file_type": "text", "error": str(e)}
                    ))
                except:
                    print(f"Failed to process {file_path}: {e}")
        
        return documents
    
    def create_advanced_index(self, documents: List[Document], use_hierarchical: bool = False) -> VectorStoreIndex:
        if use_hierarchical or len(documents) > 10:
            nodes = self.hierarchical_parser.get_nodes_from_documents(documents)
        else:
            nodes = self.sentence_window_parser.get_nodes_from_documents(documents)
        
        index = VectorStoreIndex(
            nodes,
            embed_model=self.embed_model
        )
        
        return index
    
    def create_context_aware_query_engine(self, index: VectorStoreIndex):
        retriever = VectorIndexRetriever(
            index=index,
            similarity_top_k=10,
            embed_model=self.embed_model
        )
        
        query_engine = RetrieverQueryEngine(
            retriever=retriever,
            node_postprocessors=[self.reranker],
            llm=proj_llm
        )
        
        return query_engine

def comprehensive_rag_analysis(file_paths: List[str], query: str, task_context: str = "") -> str:
    try:
        rag_engine = EnhancedRAGQueryEngine(task_context)
        documents = rag_engine.load_and_process_documents(file_paths)
        
        if not documents:
            return "No documents could be processed successfully."
        
        total_text_length = sum(len(doc.text) for doc in documents)
        use_hierarchical = total_text_length > 50000 or len(documents) > 5
        
        index = rag_engine.create_advanced_index(documents, use_hierarchical)
        query_engine = rag_engine.create_context_aware_query_engine(index)
        
        enhanced_query = f"""
        Task Context: {task_context}
        Original Query: {query}
        
        Please analyze the provided documents and answer the query with precise, factual information.
        """
        
        response = query_engine.query(enhanced_query)
        
        result = f"**RAG Analysis Results:**\n\n"
        result += f"**Documents Processed:** {len(documents)}\n"
        result += f"**Answer:**\n{response.response}\n\n"
        
        return result
        
    except Exception as e:
        return f"RAG analysis failed: {str(e)}"

def cross_document_analysis(file_paths: List[str], query: str, task_context: str = "") -> str:
    try:
        rag_engine = EnhancedRAGQueryEngine(task_context)
        all_documents = []
        document_groups = {}
        
        for file_path in file_paths:
            docs = rag_engine.load_and_process_documents([file_path])
            doc_key = os.path.basename(file_path)
            document_groups[doc_key] = docs
            
            for doc in docs:
                doc.metadata.update({
                    "document_group": doc_key,
                    "total_documents": len(file_paths)
                })
            all_documents.extend(docs)
        
        index = rag_engine.create_advanced_index(all_documents, use_hierarchical=True)
        query_engine = rag_engine.create_context_aware_query_engine(index)
        
        response = query_engine.query(f"Task: {task_context}\nQuery: {query}")
        
        result = f"**Cross-Document Analysis:**\n"
        result += f"**Documents:** {list(document_groups.keys())}\n"
        result += f"**Answer:**\n{response.response}\n"
        
        return result
        
    except Exception as e:
        return f"Cross-document analysis failed: {str(e)}"

# Create tools
enhanced_rag_tool = FunctionTool.from_defaults(
    fn=comprehensive_rag_analysis,
    name="Enhanced RAG Analysis",
    description="Comprehensive document analysis using advanced RAG with hybrid search and context-aware processing"
)

cross_document_tool = FunctionTool.from_defaults(
    fn=cross_document_analysis,
    name="Cross-Document Analysis", 
    description="Advanced analysis across multiple documents with cross-referencing capabilities"
)

# Analysis Agent
analysis_agent = FunctionAgent(
    name="AnalysisAgent",
    description="Advanced multimodal analysis using enhanced RAG with hybrid search and cross-document capabilities",
    system_prompt="""
    You are an advanced analysis specialist with access to:
    - Enhanced RAG with hybrid search and reranking
    - Multi-format document processing (PDF, Word, CSV, images, text)
    - Cross-document analysis and synthesis
    - Context-aware query processing
    
    Your capabilities:
    1. Process multiple file types simultaneously
    2. Perform semantic search across document collections
    3. Cross-reference information between documents
    4. Extract precise information with source attribution
    5. Handle both text and visual content analysis
    
    Always consider the GAIA task context and provide precise, well-sourced answers.
    """,
    llm=proj_llm,
    tools=[enhanced_rag_tool, cross_document_tool],
    max_steps=5, 
    verbose = True
)

class IntelligentSourceRouter:
    def __init__(self):
        # Initialize ArXiv and DuckDuckGo as LlamaIndex tools
        self.arxiv_tool = ArxivToolSpec().to_tool_list()[0]
        self.duckduckgo_tool = DuckDuckGoSearchToolSpec().to_tool_list()[1]

    def detect_intent_and_extract_content(self, query: str, max_results = 1) -> str:
        # Use your LLM to decide between arxiv and web_search
        intent_prompt = f"""
        Analyze this query and determine if it's scientific research or general information:
        Query: "{query}"
        Choose ONE source:
        - arxiv: For scientific research, academic papers, technical studies, algorithms, experiments
        - web_search: For all other information (current events, general facts, weather, how-to guides, etc.)
        Respond with ONLY "arxiv" or "web_search".
        """
        response = proj_llm.complete(intent_prompt)
        selected_source = response.text.strip().lower()

        results = [f"**Query**: {query}", f"**Selected Source**: {selected_source}", "="*50]
        try:
            if selected_source == 'arxiv':
                result = self.arxiv_tool.call(query=query)
                results.append(f"**ArXiv Research:**\n{result}")
            else:
                result = self.duckduckgo_tool.call(query=query, max_results=max_results)
                # Format results if needed
                if isinstance(result, list):
                    formatted = []
                    for i, r in enumerate(result, 1):
                        formatted.append(
                            f"{i}. **{r.get('title', '')}**\n   URL: {r.get('href', '')}\n   {r.get('body', '')}"
                        )
                    result = "\n".join(formatted)
                results.append(f"**Web Search Results:**\n{result}")
        except Exception as e:
            results.append(f"**Search failed**: {str(e)}")
        return "\n\n".join(results)

# Initialize router
intelligent_router = IntelligentSourceRouter()

# Create enhanced research tool
def enhanced_smart_research_tool(query: str, task_context: str = "") -> str:
    full_query = f"{query} {task_context}".strip()
    return intelligent_router.detect_intent_and_extract_content(full_query)

research_tool = FunctionTool.from_defaults(
    fn=enhanced_smart_research_tool,
    name="Research Tool",
    description="""Intelligent research specialist that automatically routes between scientific and general sources and extract content. Use this tool at least when you need:
    
    **Scientific Research (ArXiv + Content Extraction):**
    
    **General Research (Web + Content Extraction):**
    
    **Automatic Features:**
    - Intelligently selects between ArXiv and web search
    - Extracts full content from web pages (not just snippets)
    - Provides source attribution and detailed information
    
    **When to use:** Questions requiring external knowledge not in your training data, current events, scientific research, or factual verification.
    
    **Input format:** Provide the research query with any relevant context."""
)

def execute_python_code(code: str) -> str:
    try:
        safe_globals = {
            "__builtins__": {
                "len": len, "str": str, "int": int, "float": float,
                "list": list, "dict": dict, "sum": sum, "max": max, "min": min,
                "round": round, "abs": abs, "sorted": sorted, "enumerate": enumerate,
                "range": range, "zip": zip, "map": map, "filter": filter,
                "any": any, "all": all, "type": type, "isinstance": isinstance,
                "print": print, "open": open, "bool": bool, "set": set, "tuple": tuple
            },
            # Core Python modules
            "math": __import__("math"),
            "datetime": __import__("datetime"),
            "re": __import__("re"),
            "os": __import__("os"),
            "sys": __import__("sys"),
            "json": __import__("json"),
            "csv": __import__("csv"),
            "random": __import__("random"),
            "itertools": __import__("itertools"),
            "collections": __import__("collections"),
            "functools": __import__("functools"),
            
            # Data Science and Numerical Computing
            "numpy": __import__("numpy"),
            "np": __import__("numpy"),
            "pandas": __import__("pandas"),
            "pd": __import__("pandas"),
            "scipy": __import__("scipy"),
            
            # Visualization
            "matplotlib": __import__("matplotlib"),
            "plt": __import__("matplotlib.pyplot"),
            "seaborn": __import__("seaborn"),
            "sns": __import__("seaborn"),
            "plotly": __import__("plotly"),
            
            # Machine Learning
            "sklearn": __import__("sklearn"),
            "xgboost": __import__("xgboost"),
            "lightgbm": __import__("lightgbm"),
            
            # Statistics
            "statistics": __import__("statistics"),
            "statsmodels": __import__("statsmodels"),
            
            # Image Processing
            "PIL": __import__("PIL"),
            "cv2": __import__("cv2"),
            "skimage": __import__("skimage"),
            
            # Network and Web
            "requests": __import__("requests"),
            "urllib": __import__("urllib"),
            
            # Text Processing
            "nltk": __import__("nltk"),
            "spacy": __import__("spacy"),
            
            # Time Series
            "pytz": __import__("pytz"),
            
            # Utilities
            "tqdm": __import__("tqdm"),
            "pickle": __import__("pickle"),
            "gzip": __import__("gzip"),
            "base64": __import__("base64"),
            "hashlib": __import__("hashlib"),
            "uuid": __import__("uuid"),
            
            # Scientific Computing
            "sympy": __import__("sympy"),
            "networkx": __import__("networkx"),
            
            # Database
            "sqlite3": __import__("sqlite3"),
            
            # Parallel Processing
            "multiprocessing": __import__("multiprocessing"),
            "threading": __import__("threading"),
            "concurrent": __import__("concurrent"),
        }
            
        exec_locals = {}
        exec(code, safe_globals, exec_locals)
    
        if 'result' in exec_locals:
            return str(exec_locals['result'])
        else:
            return "Code executed successfully"
    
    except Exception as e:
        return f"Code execution failed: {str(e)}"

code_execution_tool = FunctionTool.from_defaults(
fn=execute_python_code,
name="Python Code Execution",
description="Execute Python code safely for calculations and data processing"
)

# Code Agent as ReActAgent with explicit code generation
code_agent = ReActAgent(
    name="CodeAgent",
    description="Advanced calculations, data processing using code generation and execution",
    system_prompt="""
    You are a coding specialist. For EVERY computational task:
    
    1. THINK: Analyze what calculation/processing is needed
    2. GENERATE CODE: Write Python code to solve the problem
    3. EXECUTE: Use the Python Code Execution tool to run your code
    4. OBSERVE: Check the results
    5. REPEAT if needed
    
    ALWAYS write code for:
    - Mathematical calculations
    - Data processing
    - Numerical analysis
    - Text processing
    - Any computational task
    
    Example workflow:
    Question: "What is 15 * 23 + 7?"
    
    Thought: I need to calculate 15 * 23 + 7
    Action: Python Code Execution
    Action Input: {"code": "result = 15 * 23 + 7\nprint(f'The answer is: {result}')"}
    
    Store your final answer in a variable called 'result'.
    """,
    llm=proj_llm,
    tools=[code_execution_tool],
    max_steps=5,
    verbose=True, 
    callback_manager=callback_manager,
)

def analysis_function(query: str, files=None):
    ctx = Context(analysis_agent)
    return analysis_agent.run(query, ctx=ctx)

def code_function(query: str):
    ctx = Context(code_agent)
    return code_agent.run(query, ctx=ctx)


analysis_tool = FunctionTool.from_defaults(
    fn=analysis_function,
    name="AnalysisAgent",
    description="""Advanced multimodal document analysis specialist. Use this tool at least when you need to:
    
    **Document Processing:**
    - Analyze PDF, Word, CSV, or image files provided with the question
    - Extract specific information from tables, charts, or structured documents
    - Cross-reference information across multiple documents
    - Perform semantic search within document collections
    
    **Content Analysis:**
    - Summarize long documents or extract key facts
    - Find specific data points, numbers, or text within files
    - Analyze visual content in images (charts, graphs, diagrams)
    - Compare information between different document sources
    
    **When to use:** Questions involving file attachments, document analysis, data extraction from PDFs/images, or when you need to process structured/unstructured content.
    
    **Input format:** Provide the query and mention any relevant files or context."""
)

code_tool = FunctionTool.from_defaults(
    fn=code_function,
    name="CodeAgent",
    description="""Advanced computational specialist using ReAct reasoning. Use this tool at least when you need:
    
    **Core Capabilities:**
    - **Autonomous Code Generation**: Writes Python code from scratch to solve computational problems
    - **Multi-step Problem Solving**: Breaks complex tasks into manageable coding steps
    - **Self-debugging**: Identifies and fixes errors through iterative refinement
    - **Library Integration**: Leverages numpy, pandas, matplotlib, scipy, sklearn, and other scientific libraries
    - **Result Verification**: Validates outputs and adjusts approach as needed
    
    **When to Use:**
    - Mathematical calculations requiring step-by-step computation
    - Data analysis and statistical processing
    - Algorithm implementation and optimization
    - Numerical simulations and modeling
    - Text processing and pattern analysis
    - Complex logical operations requiring code verification
    
    **Unique Advantage**: Unlike simple calculation tools, this agent can autonomously write, execute, debug, and refine code until achieving the correct solution, making it ideal for complex computational tasks that require adaptive problem-solving.
    
    **Input Format**: Describe the computational task clearly, including any data, constraints, or specific requirements."""
)

class EnhancedGAIAAgent:
    def __init__(self):
        print("Initializing Enhanced GAIA Agent...")
        
        # Vérification du token HuggingFace
        hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
        if not hf_token:
            raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable is required")

        # Agent coordinateur principal qui utilise les agents spécialisés comme tools
        self.coordinator = ReActAgent(
            name="GAIACoordinator",
            description="Main GAIA coordinator that uses specialized capabilities as intelligent tools",
            system_prompt="""
            You are the main GAIA coordinator using ReAct reasoning methodology.
                        
            You have access to THREE specialist tools:
            
            **1. analysis_tool** - Advanced multimodal document analysis specialist
            - Use for: PDF, Word, CSV, image file analysis
            - Capabilities: Extract data from tables/charts, cross-reference documents, semantic search
            - When to use: Questions with file attachments, document analysis, data extraction
            
            **2. research_tool** - Intelligent research specialist with automatic routing
            - Use for: External knowledge, current events, scientific papers
            - Capabilities: Auto-routes between ArXiv (scientific) and web search (general), extracts full content
            - When to use: Questions requiring external knowledge, factual verification, current information
            
            **3. code_tool** - Advanced computational specialist using ReAct reasoning
            - Use for: Mathematical calculations, data processing, logical operations
            - Capabilities: Generates and executes Python code, handles complex computations, step-by-step problem solving
            - When to use: Precise calculations, data manipulation, mathematical problem solving
            
            IMPORTANT: Use tools strategically - only when their specific expertise is needed.
            For simple questions, you can answer directly without using any tools.
            
            CRITICAL: Your final answer must be EXACT and CONCISE as required by GAIA format:
            - For numbers: provide only the number (e.g., "42" or "3.14")
            - For strings: provide only the exact string (e.g., "Paris" or "Einstein")
            - For lists: use comma separation (e.g., "apple, banana, orange")
            - NO explanations, NO additional text, ONLY the precise answer
            """,
            llm=proj_llm,
            tools=[analysis_tool, research_tool, code_tool], 
            max_steps=10, 
            verbose = True, 
            callback_manager=callback_manager,

        )

    async def format_gaia_answer(self, raw_response: str, original_question: str) -> str:
        """
        Post-process the agent response to extract the exact GAIA format answer
        """
        format_prompt = f"""Extract the exact answer from the response below. Follow GAIA formatting rules strictly.
    
    Examples:
    
    Question: "How many research papers were published by the university between 2010 and 2020?"
    Response: "Based on my analysis of the data, I found that the university published 156 research papers between 2010 and 2020."
    Answer: 156
    
    Question: "What is the last name of the software engineer mentioned in the report?"
    Response: "After reviewing the document, the software engineer mentioned is Dr. Martinez who developed the system."
    Answer: Martinez
    
    Question: "List the programming languages from this job description, alphabetized:"
    Response: "The job description mentions several programming languages including Python, Java, C++, and JavaScript. When alphabetized, these are: C++, Java, JavaScript, Python"
    Answer: C++, Java, JavaScript, Python
    
    Question: "Give only the first name of the developer who created the framework."
    Response: "The framework was created by Sarah Johnson, a senior developer at the company."
    Answer: Sarah
    
    Question: "Give the ISO country code as your answer."
    Response: "The country in question is France, which has the ISO code FRA."
    Answer: FRA
    
    Question: "Provide your response in standard notation."
    Response: "The calculated value is 314 million, which in standard notation is 3.14e+8"
    Answer: 3.14e+8
    
    Now extract the exact answer:
    
    Question: {original_question}
    Response: {raw_response}
    Answer:"""
    
        try:
            formatting_response = proj_llm.complete(format_prompt)
            answer = str(formatting_response).strip()
            
            # Extract just the answer after "Answer:"
            if "Answer:" in answer:
                answer = answer.split("Answer:")[-1].strip()
            
            return answer
            
        except Exception as e:
            print(f"Error in formatting: {e}")
            return self._extract_fallback_answer(raw_response)
    
    def download_gaia_file(self, task_id: str, api_url: str = "https://agents-course-unit4-scoring.hf.space") -> str:
        """Download file associated with task_id"""
        try:
            response = requests.get(f"{api_url}/files/{task_id}", timeout=30)
            response.raise_for_status()
            
            # Save file locally
            filename = f"task_{task_id}_file"
            with open(filename, 'wb') as f:
                f.write(response.content)
            return filename
        except Exception as e:
            print(f"Failed to download file for task {task_id}: {e}")
            return None

    async def solve_gaia_question(self, question_data: Dict[str, Any]) -> str:
            question = question_data.get("Question", "")
            task_id = question_data.get("task_id", "")
    
            # Try to download file
            try:
                file_path = self.download_gaia_file(task_id)
            except Exception as e:
                print(f"Failed to download file for task {task_id}: {e}")
                file_path = None
    
            context_prompt = f"""
            GAIA Task ID: {task_id}
            Question: {question}
            {'File downloaded: ' + file_path if file_path else 'No additional files referenced'}
            
            Additionnal instructions to system prompt :
            1. If a file is available, use the analysis_tool to process it
            2. If a link is available, use the research_tool to extract the content in it
            """
            
            try:
                ctx = Context(self.coordinator)
                
                # Use streaming to see step-by-step reasoning
                print("=== AGENT REASONING STEPS ===")
                handler = self.coordinator.run(ctx=ctx, user_msg=context_prompt)
                
                full_response = ""
                async for event in handler.stream_events():
                    if isinstance(event, AgentStream):
                        print(event.delta, end="", flush=True)
                        full_response += event.delta
                
                # Get the final response
                raw_response = await handler
                print("\n=== END REASONING ===")
                
                # Post-process to extract exact GAIA format
                formatted_answer = await self.format_gaia_answer(str(raw_response), question)
                
                print(f"Formatted answer: {formatted_answer}")
                
                return formatted_answer
                
            except Exception as e:
                error_msg = f"Error processing question: {str(e)}"
                print(error_msg)
                return error_msg