Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,92 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
-
|
4 |
"""
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
"""
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
gr.
|
52 |
-
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
1 |
"""
|
2 |
+
PetBull-7B-VL demo Space
|
3 |
+
------------------------
|
4 |
+
|
5 |
+
• Base model : Qwen/Qwen2.5-VL-7B-Instruct
|
6 |
+
• LoRA adapter: ColdSlim/PetBull-7B (light-weight repo you just pushed)
|
7 |
+
|
8 |
+
Put this file in your Space, add a `requirements.txt` with:
|
9 |
+
transformers>=4.41.0
|
10 |
+
peft>=0.11.0
|
11 |
+
accelerate
|
12 |
+
gradio>=4.33
|
13 |
+
|
14 |
+
Then (optionally) switch the Space hardware to **GPU (shared)** in
|
15 |
+
Settings → Hardware for much faster vision-language inference.
|
16 |
"""
|
|
|
17 |
|
18 |
+
import torch, gradio as gr
|
19 |
+
from PIL import Image
|
20 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq
|
21 |
+
from peft import PeftModel
|
22 |
|
23 |
+
# ---------------------------------------------------------------------
|
24 |
+
# 1 Load base + LoRA (≈ 12 GB VRAM in bf16; falls back to CPU if needed)
|
25 |
+
# ---------------------------------------------------------------------
|
26 |
+
BASE_MODEL = "Qwen/Qwen2.5-VL-7B-Instruct"
|
27 |
+
ADAPTER_REPO = "ColdSlim/PetBull-7B" # 👉 replace with your HF path if different
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
30 |
+
dtype = torch.float16 if device == "cuda" else torch.float32
|
|
|
|
|
|
|
31 |
|
32 |
+
processor = AutoProcessor.from_pretrained(BASE_MODEL, trust_remote_code=True)
|
33 |
+
base = AutoModelForVision2Seq.from_pretrained(
|
34 |
+
BASE_MODEL, torch_dtype=dtype, trust_remote_code=True)
|
35 |
+
model = PeftModel.from_pretrained(base, ADAPTER_REPO)
|
36 |
+
model.to(device).eval()
|
37 |
|
38 |
+
# ---------------------------------------------------------------------
|
39 |
+
# 2 Inference helper
|
40 |
+
# ---------------------------------------------------------------------
|
41 |
+
def generate_answer(image: Image.Image | None,
|
42 |
+
question: str,
|
43 |
+
temperature: float = 0.7,
|
44 |
+
top_p: float = 0.95,
|
45 |
+
max_tokens: int = 512) -> str:
|
46 |
+
"""
|
47 |
+
Runs one‐shot VQA chat. Image is optional; if None we still obey the
|
48 |
+
prompt format required by Qwen-VL by inserting a blank white image.
|
49 |
+
"""
|
50 |
+
if image is None:
|
51 |
+
image = Image.new("RGB", (224, 224), color="white")
|
52 |
|
53 |
+
inputs = processor(text=[question],
|
54 |
+
images=[image],
|
55 |
+
return_tensors="pt").to(device)
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
with torch.no_grad():
|
58 |
+
output_ids = model.generate(**inputs,
|
59 |
+
max_new_tokens=max_tokens,
|
60 |
+
temperature=temperature,
|
61 |
+
top_p=top_p)
|
62 |
+
return processor.batch_decode(output_ids,
|
63 |
+
skip_special_tokens=True)[0]
|
64 |
|
65 |
+
# ---------------------------------------------------------------------
|
66 |
+
# 3 Gradio UI
|
67 |
+
# ---------------------------------------------------------------------
|
68 |
+
with gr.Blocks(title="PetBull-7B-VL – Ask a Vet Bot") as demo:
|
69 |
+
gr.Markdown(
|
70 |
+
"""
|
71 |
+
## 🐾 PetBull-7B-VL
|
72 |
+
Upload a photo of your pet **and/or** ask a question.
|
73 |
+
The model will analyse the image (if provided) and give tailored advice.
|
74 |
+
"""
|
75 |
+
)
|
76 |
|
77 |
+
with gr.Row():
|
78 |
+
with gr.Column(scale=1):
|
79 |
+
img_in = gr.Image(type="pil", label="Pet photo (optional)")
|
80 |
+
txt_in = gr.Textbox(lines=3, placeholder="Describe the issue or ask a question…")
|
81 |
+
run_btn = gr.Button("Ask PetBull")
|
82 |
+
temp_sl = gr.Slider(0.1, 1.5, 0.7, label="Temperature")
|
83 |
+
topp_sl = gr.Slider(0.1, 1.0, 0.95, label="Top-p")
|
84 |
+
max_sl = gr.Slider(32, 1024, 512, step=8, label="Max new tokens")
|
85 |
+
with gr.Column(scale=1):
|
86 |
+
answer = gr.Textbox(lines=12, label="Assistant", interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
run_btn.click(fn=generate_answer,
|
89 |
+
inputs=[img_in, txt_in, temp_sl, topp_sl, max_sl],
|
90 |
+
outputs=answer)
|
91 |
|
92 |
+
demo.queue().launch()
|
|