DermalCare / app.py
ColdSlim's picture
Update app.py
ba6b39e verified
"""
PetBull‑7B‑VL demo – ZeroGPU‑ready (Qwen2.5‑VL API)
"""
import os
import spaces
import torch
import gradio as gr
from PIL import Image
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
from peft import PeftModel
from qwen_vl_utils import process_vision_info # pip install qwen-vl-utils
import transformers, accelerate, numpy as np
print("VERSIONS:", transformers.__version__, accelerate.__version__, torch.__version__, np.__version__)
os.environ["ACCELERATE_USE_SLOW_RETRIEVAL"] = "true"
# ---- Config ----
BASE_MODEL = "Qwen/Qwen2.5-VL-7B-Instruct"
ADAPTER_REPO = "ColdSlim/PetBull-7B" # your LoRA
ADAPTER_REV = "master"
OFFLOAD_DIR = "offload"
DTYPE = torch.float16
# ---- Processor (no GPU) ----
processor = AutoProcessor.from_pretrained(BASE_MODEL, trust_remote_code=True)
# ---- Base model ON CPU (do NOT touch CUDA here) ----
base = Qwen2_5_VLForConditionalGeneration.from_pretrained(
BASE_MODEL,
torch_dtype=DTYPE,
low_cpu_mem_usage=True,
device_map={"": "cpu"},
offload_folder=OFFLOAD_DIR,
trust_remote_code=True,
)
# ---- Attach LoRA ON CPU ----
model = PeftModel.from_pretrained(
base,
ADAPTER_REPO,
revision=ADAPTER_REV,
device_map={"": "cpu"},
).eval()
_model_on_gpu = False # once-per-session move
# ---- Inference on GPU (ZeroGPU pattern) ----
@spaces.GPU(duration=120)
def generate_answer(image, question, temperature=0.7, top_p=0.95, max_tokens=256):
"""
Uses Qwen2.5-VL chat template + qwen_vl_utils to prepare image+text, then generate.
"""
global _model_on_gpu
if image is None:
image = Image.new("RGB", (224, 224), color="white")
if not _model_on_gpu:
model.to("cuda")
_model_on_gpu = True
# Build chat messages in Qwen format
messages = [{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": question or "Describe this image."},
],
}]
# Processor helpers
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
# Pack tensors on GPU
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = {k: (v.to("cuda") if hasattr(v, "to") else v) for k, v in inputs.items()}
with torch.no_grad():
out = model.generate(
**inputs,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
# Trim prompt tokens before decode (Qwen style)
trimmed = [o[len(i):] for i, o in zip(inputs["input_ids"], out)]
return processor.batch_decode(trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
# ---- UI ----
with gr.Blocks(title="PetBull‑7B‑VL (ZeroGPU, Qwen2.5‑VL)") as demo:
gr.Markdown("## PetBull‑7B‑VL – Ask a Vet\nUpload a photo and/or type a question.")
with gr.Row():
with gr.Column():
img_in = gr.Image(type="pil", label="Pet photo (optional)")
txt_in = gr.Textbox(lines=3, placeholder="Describe the issue…")
ask = gr.Button("Ask PetBull")
temp = gr.Slider(0.1, 1.5, 0.7, label="Temperature")
topp = gr.Slider(0.1, 1.0, 0.95, label="Top‑p")
max_tok = gr.Slider(32, 512, 256, step=8, label="Max tokens")
with gr.Column():
answer = gr.Textbox(lines=12, label="Assistant", interactive=False)
ask.click(generate_answer, inputs=[img_in, txt_in, temp, topp, max_tok], outputs=answer)
demo.queue().launch(show_api=False, share=True)