Spaces:
Sleeping
Sleeping
""" | |
PetBull‑7B‑VL demo – ZeroGPU‑ready (Qwen2.5‑VL API) | |
""" | |
import os | |
import spaces | |
import torch | |
import gradio as gr | |
from PIL import Image | |
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration | |
from peft import PeftModel | |
from qwen_vl_utils import process_vision_info # pip install qwen-vl-utils | |
import transformers, accelerate, numpy as np | |
print("VERSIONS:", transformers.__version__, accelerate.__version__, torch.__version__, np.__version__) | |
os.environ["ACCELERATE_USE_SLOW_RETRIEVAL"] = "true" | |
# ---- Config ---- | |
BASE_MODEL = "Qwen/Qwen2.5-VL-7B-Instruct" | |
ADAPTER_REPO = "ColdSlim/PetBull-7B" # your LoRA | |
ADAPTER_REV = "master" | |
OFFLOAD_DIR = "offload" | |
DTYPE = torch.float16 | |
# ---- Processor (no GPU) ---- | |
processor = AutoProcessor.from_pretrained(BASE_MODEL, trust_remote_code=True) | |
# ---- Base model ON CPU (do NOT touch CUDA here) ---- | |
base = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
BASE_MODEL, | |
torch_dtype=DTYPE, | |
low_cpu_mem_usage=True, | |
device_map={"": "cpu"}, | |
offload_folder=OFFLOAD_DIR, | |
trust_remote_code=True, | |
) | |
# ---- Attach LoRA ON CPU ---- | |
model = PeftModel.from_pretrained( | |
base, | |
ADAPTER_REPO, | |
revision=ADAPTER_REV, | |
device_map={"": "cpu"}, | |
).eval() | |
_model_on_gpu = False # once-per-session move | |
# ---- Inference on GPU (ZeroGPU pattern) ---- | |
def generate_answer(image, question, temperature=0.7, top_p=0.95, max_tokens=256): | |
""" | |
Uses Qwen2.5-VL chat template + qwen_vl_utils to prepare image+text, then generate. | |
""" | |
global _model_on_gpu | |
if image is None: | |
image = Image.new("RGB", (224, 224), color="white") | |
if not _model_on_gpu: | |
model.to("cuda") | |
_model_on_gpu = True | |
# Build chat messages in Qwen format | |
messages = [{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "image": image}, | |
{"type": "text", "text": question or "Describe this image."}, | |
], | |
}] | |
# Processor helpers | |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
image_inputs, video_inputs = process_vision_info(messages) | |
# Pack tensors on GPU | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
) | |
inputs = {k: (v.to("cuda") if hasattr(v, "to") else v) for k, v in inputs.items()} | |
with torch.no_grad(): | |
out = model.generate( | |
**inputs, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
) | |
# Trim prompt tokens before decode (Qwen style) | |
trimmed = [o[len(i):] for i, o in zip(inputs["input_ids"], out)] | |
return processor.batch_decode(trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
# ---- UI ---- | |
with gr.Blocks(title="PetBull‑7B‑VL (ZeroGPU, Qwen2.5‑VL)") as demo: | |
gr.Markdown("## PetBull‑7B‑VL – Ask a Vet\nUpload a photo and/or type a question.") | |
with gr.Row(): | |
with gr.Column(): | |
img_in = gr.Image(type="pil", label="Pet photo (optional)") | |
txt_in = gr.Textbox(lines=3, placeholder="Describe the issue…") | |
ask = gr.Button("Ask PetBull") | |
temp = gr.Slider(0.1, 1.5, 0.7, label="Temperature") | |
topp = gr.Slider(0.1, 1.0, 0.95, label="Top‑p") | |
max_tok = gr.Slider(32, 512, 256, step=8, label="Max tokens") | |
with gr.Column(): | |
answer = gr.Textbox(lines=12, label="Assistant", interactive=False) | |
ask.click(generate_answer, inputs=[img_in, txt_in, temp, topp, max_tok], outputs=answer) | |
demo.queue().launch(show_api=False, share=True) |