Spaces:
Running
on
Zero
Running
on
Zero
""" | |
PetBull‑7B‑VL demo – ZeroGPU‑ready | |
""" | |
import os | |
import torch | |
import spaces | |
import gradio as gr | |
from PIL import Image | |
from transformers import AutoProcessor, AutoModelForCausalLM | |
from peft import PeftModel | |
import transformers, accelerate, numpy as np | |
print("VERSIONS:", transformers.__version__, accelerate.__version__, torch.__version__, np.__version__) | |
# 0) Safer streaming for model shards | |
os.environ["ACCELERATE_USE_SLOW_RETRIEVAL"] = "true" | |
# 1) Config | |
BASE_MODEL = "Qwen/Qwen2.5-VL-7B-Instruct" | |
ADAPTER_REPO = "ColdSlim/PetBull-7B" | |
ADAPTER_REV = "master" | |
OFFLOAD_DIR = "offload" | |
DTYPE = torch.float16 | |
# 2) Processor | |
processor = AutoProcessor.from_pretrained(BASE_MODEL, trust_remote_code=True) | |
# 3) Load base model ON CPU (no AutoConfig; rely on remote code) | |
base = AutoModelForCausalLM.from_pretrained( | |
BASE_MODEL, | |
torch_dtype=DTYPE, | |
low_cpu_mem_usage=True, | |
device_map={"": "cpu"}, | |
offload_folder=OFFLOAD_DIR, | |
trust_remote_code=True, | |
) | |
# 4) Attach LoRA ON CPU | |
model = PeftModel.from_pretrained( | |
base, | |
ADAPTER_REPO, | |
revision=ADAPTER_REV, | |
device_map={"": "cpu"}, | |
).eval() | |
_model_on_gpu = False # track once-per-session transfer | |
# 5) Inference (request GPU only for this function) | |
def generate_answer( | |
image, | |
question: str, | |
temperature: float = 0.7, | |
top_p: float = 0.95, | |
max_tokens: int = 256, | |
) -> str: | |
global _model_on_gpu | |
if image is None: | |
image = Image.new("RGB", (224, 224), color="white") | |
# Move model to GPU once (inside GPU-decorated function) | |
if not _model_on_gpu: | |
model.to("cuda") | |
_model_on_gpu = True | |
# Prepare inputs on GPU | |
inputs = processor(text=[question], images=[image], return_tensors="pt") | |
inputs = {k: v.to("cuda") if hasattr(v, "to") else v for k, v in inputs.items()} | |
with torch.no_grad(): | |
output_ids = model.generate( | |
**inputs, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
) | |
outputs = output_ids.to("cpu") | |
return processor.batch_decode(outputs, skip_special_tokens=True)[0] | |
# 6) UI | |
with gr.Blocks(title="PetBull‑7B‑VL (ZeroGPU)") as demo: | |
gr.Markdown("## PetBull‑7B‑VL – Ask a Vet\nUpload a photo and/or type a question.") | |
with gr.Row(): | |
with gr.Column(): | |
img_in = gr.Image(type="pil", label="Pet photo (optional)") | |
txt_in = gr.Textbox(lines=3, placeholder="Describe the issue…") | |
ask = gr.Button("Ask PetBull") | |
temp = gr.Slider(0.1, 1.5, 0.7, label="Temperature") | |
topp = gr.Slider(0.1, 1.0, 0.95, label="Top‑p") | |
max_tok = gr.Slider(32, 512, 256, step=8, label="Max tokens") | |
with gr.Column(): | |
answer = gr.Textbox(lines=12, label="Assistant", interactive=False) | |
ask.click( | |
generate_answer, | |
inputs=[img_in, txt_in, temp, topp, max_tok], | |
outputs=answer, | |
) | |
demo.queue().launch() |