Update app.py
Browse files
app.py
CHANGED
@@ -8,10 +8,17 @@ examples=[["photo/a.jpg","Image1"],["photo/b.jpg","Image2"],
|
|
8 |
["photo/g.jpg","Image7"],["photo/h.jpg","Image8"]]
|
9 |
|
10 |
|
11 |
-
def detect_objects_on_image(image_path):
|
12 |
image = cv2.imread(image_path)
|
13 |
model = YOLO("best.pt")
|
14 |
-
results = model.predict(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
result = results[0]
|
16 |
output = []
|
17 |
for box in result.boxes:
|
@@ -45,7 +52,11 @@ outputs_image = [
|
|
45 |
]
|
46 |
demo = gr.Interface(
|
47 |
fn=detect_objects_on_image,
|
48 |
-
inputs=
|
|
|
|
|
|
|
|
|
49 |
outputs=outputs_image,
|
50 |
title="Yolov8 Custom Object Detection",
|
51 |
examples=examples,
|
|
|
8 |
["photo/g.jpg","Image7"],["photo/h.jpg","Image8"]]
|
9 |
|
10 |
|
11 |
+
def detect_objects_on_image(image_path, conf_threshold, iou_threshold):
|
12 |
image = cv2.imread(image_path)
|
13 |
model = YOLO("best.pt")
|
14 |
+
results = model.predict(
|
15 |
+
source=image,
|
16 |
+
conf=conf_threshold,
|
17 |
+
iou=iou_threshold,
|
18 |
+
show_labels=True,
|
19 |
+
show_conf=True,
|
20 |
+
imgsz=640,
|
21 |
+
)
|
22 |
result = results[0]
|
23 |
output = []
|
24 |
for box in result.boxes:
|
|
|
52 |
]
|
53 |
demo = gr.Interface(
|
54 |
fn=detect_objects_on_image,
|
55 |
+
inputs=[
|
56 |
+
gr.Image(type="pil", label="Upload Image"),
|
57 |
+
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
|
58 |
+
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"),
|
59 |
+
],
|
60 |
outputs=outputs_image,
|
61 |
title="Yolov8 Custom Object Detection",
|
62 |
examples=examples,
|