|
import gradio as gr |
|
from ultralytics import YOLO |
|
import cv2 |
|
|
|
examples=[["photo/a.jpg"],["photo/b.jpg"], |
|
["photo/c.jpg"],["photo/d.jpg"], |
|
["photo/e.jpg"],["photo/f.jpg"], |
|
["photo/g.jpg"],["photo/h.jpg"]] |
|
|
|
|
|
def detect_objects_on_image(image_path, conf_threshold, iou_threshold): |
|
image = cv2.imread(image_path) |
|
model = YOLO("best.pt") |
|
results = model.predict( |
|
source=image, |
|
conf=conf_threshold, |
|
iou=iou_threshold, |
|
show_labels=True, |
|
show_conf=True, |
|
imgsz=640, |
|
) |
|
result = results[0] |
|
output = [] |
|
for box in result.boxes: |
|
x1, y1, x2, y2 = [ |
|
round(x) for x in box.xyxy[0].tolist() |
|
|
|
] |
|
class_id = box.cls[0].item() |
|
prob = round(box.conf[0].item(), 2) |
|
output.append([ |
|
x1, y1, x2, y2, result.names[class_id], prob |
|
]) |
|
cv2.rectangle( |
|
image, |
|
(x1, y1), |
|
(x2, y2), |
|
color=(0, 0, 255), |
|
thickness=2, |
|
lineType=cv2.LINE_AA |
|
) |
|
|
|
cv2.putText(image,result.names[class_id]+'_'+str(prob), (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36,255,12), 2) |
|
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
|
|
demo = gr.Interface( |
|
fn=detect_objects_on_image, |
|
inputs=[ |
|
gr.Image(type="filepath", label="Input Image"), |
|
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"), |
|
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"), |
|
], |
|
outputs=[ |
|
gr.Image(type="numpy", label="Output Image"), |
|
], |
|
title="Yolov8 Custom Object Detection", |
|
examples=examples, |
|
cache_examples=False, |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |