import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load the tokenizer model_name = "TuringsSolutions/TechLegalV1" tokenizer = AutoTokenizer.from_pretrained(model_name) # Load the model # Assuming it's a CausalLM model, you might need to adjust based on your model's architecture model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) # Function to make predictions def predict(text): inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): outputs = model.generate(**inputs) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Create a Gradio interface iface = gr.Interface( fn=predict, inputs=gr.inputs.Textbox(lines=2, placeholder="Enter text here..."), outputs="text", title="Tech Legal Model", description="A model for analyzing tech legal documents." ) # Launch the interface if __name__ == "__main__": iface.launch()