# Copyright (c) ONNX Project Contributors # # SPDX-License-Identifier: Apache-2.0 from typing import Tuple import numpy as np import onnx from onnx.backend.test.case.base import Base from onnx.backend.test.case.node import expect def einsum_reference_implementation( Eqn: str, Operands: Tuple[np.ndarray, ...] ) -> np.ndarray: Z = np.einsum(Eqn, *Operands) return Z class Einsum(Base): @staticmethod def export_einsum_transpose() -> None: Eqn = "ij->ji" node = onnx.helper.make_node( "Einsum", inputs=["x"], outputs=["y"], equation=Eqn ) X = np.random.randn(3, 4) Y = einsum_reference_implementation(Eqn, (X,)) expect(node, inputs=[X], outputs=[Y], name="test_einsum_transpose") @staticmethod def export_einsum_sum() -> None: Eqn = "ij->i" node = onnx.helper.make_node( "Einsum", inputs=["x"], outputs=["y"], equation=Eqn ) X = np.random.randn(3, 4) Z = einsum_reference_implementation(Eqn, (X,)) expect(node, inputs=[X], outputs=[Z], name="test_einsum_sum") @staticmethod def export_einsum_batch_diagonal() -> None: Eqn = "...ii ->...i" node = onnx.helper.make_node( "Einsum", inputs=["x"], outputs=["y"], equation=Eqn ) X = np.random.randn(3, 5, 5) Z = einsum_reference_implementation(Eqn, (X,)) expect(node, inputs=[X], outputs=[Z], name="test_einsum_batch_diagonal") @staticmethod def export_einsum_inner_prod() -> None: Eqn = "i,i" node = onnx.helper.make_node( "Einsum", inputs=["x", "y"], outputs=["z"], equation=Eqn ) X = np.random.randn(5) Y = np.random.randn(5) Z = einsum_reference_implementation(Eqn, (X, Y)) expect(node, inputs=[X, Y], outputs=[Z], name="test_einsum_inner_prod") @staticmethod def export_einsum_batch_matmul() -> None: Eqn = "bij, bjk -> bik" node = onnx.helper.make_node( "Einsum", inputs=["x", "y"], outputs=["z"], equation=Eqn ) X = np.random.randn(5, 2, 3) Y = np.random.randn(5, 3, 4) Z = einsum_reference_implementation(Eqn, (X, Y)) expect(node, inputs=[X, Y], outputs=[Z], name="test_einsum_batch_matmul")