Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,1324 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import re
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import seaborn as sns
|
7 |
+
import nltk
|
8 |
+
from nltk.corpus import stopwords
|
9 |
+
from nltk.stem.snowball import SnowballStemmer
|
10 |
+
import pickle
|
11 |
+
from transformers import pipeline as hf_pipeline
|
12 |
+
from sklearn.utils.multiclass import type_of_target
|
13 |
+
import io
|
14 |
+
import base64
|
15 |
+
from sklearn.model_selection import train_test_split
|
16 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
17 |
+
from sklearn.pipeline import Pipeline
|
18 |
+
from sklearn.multiclass import OneVsRestClassifier
|
19 |
+
from sklearn.linear_model import LogisticRegression
|
20 |
+
from sklearn.naive_bayes import MultinomialNB
|
21 |
+
from sklearn.metrics import roc_auc_score, accuracy_score, classification_report
|
22 |
+
from textblob import TextBlob
|
23 |
+
import warnings
|
24 |
+
from sklearn.metrics import precision_score, recall_score, f1_score, confusion_matrix
|
25 |
+
from sklearn.metrics import roc_curve
|
26 |
+
|
27 |
+
warnings.filterwarnings('ignore')
|
28 |
+
|
29 |
+
# Download required NLTK resources
|
30 |
+
try:
|
31 |
+
nltk.data.find('corpora/stopwords')
|
32 |
+
except LookupError:
|
33 |
+
nltk.download('stopwords')
|
34 |
+
|
35 |
+
# Initialize the stemmer
|
36 |
+
stemmer = SnowballStemmer('english')
|
37 |
+
stop_words_set = set(stopwords.words('english'))
|
38 |
+
|
39 |
+
|
40 |
+
# Text preprocessing functions
|
41 |
+
def remove_stopwords(text):
|
42 |
+
return " ".join([word for word in str(text).split() if word.lower() not in stop_words_set])
|
43 |
+
|
44 |
+
|
45 |
+
def train_lightweight_model(data, text_column, label_column):
|
46 |
+
"""
|
47 |
+
Train a lightweight model for toxicity detection
|
48 |
+
|
49 |
+
Args:
|
50 |
+
data: DataFrame containing the data
|
51 |
+
text_column: Column name for text data
|
52 |
+
label_column: Column name for label data
|
53 |
+
|
54 |
+
Returns:
|
55 |
+
Trained model and vectorizer
|
56 |
+
"""
|
57 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
58 |
+
from sklearn.linear_model import LogisticRegression
|
59 |
+
from sklearn.pipeline import Pipeline
|
60 |
+
|
61 |
+
# Preprocess text
|
62 |
+
data['processed_text'] = data[text_column].apply(preprocess_text)
|
63 |
+
|
64 |
+
# Create a pipeline with TF-IDF and Logistic Regression
|
65 |
+
model = Pipeline([
|
66 |
+
('tfidf', TfidfVectorizer(max_features=5000, ngram_range=(1, 2))),
|
67 |
+
('clf', LogisticRegression(random_state=42, max_iter=1000))
|
68 |
+
])
|
69 |
+
|
70 |
+
# Train the model
|
71 |
+
model.fit(data['processed_text'], data[label_column])
|
72 |
+
|
73 |
+
return model
|
74 |
+
|
75 |
+
|
76 |
+
def load_bert_model():
|
77 |
+
"""
|
78 |
+
Load a pre-trained BERT model for sentiment analysis
|
79 |
+
|
80 |
+
Returns:
|
81 |
+
Loaded model
|
82 |
+
"""
|
83 |
+
try:
|
84 |
+
# Load sentiment analysis model from HuggingFace
|
85 |
+
sentiment_analyzer = hf_pipeline("sentiment-analysis")
|
86 |
+
st.success("BERT model loaded successfully!")
|
87 |
+
return sentiment_analyzer
|
88 |
+
except Exception as e:
|
89 |
+
st.error(f"Error loading BERT model: {e}")
|
90 |
+
return None
|
91 |
+
|
92 |
+
|
93 |
+
def clean_text(text):
|
94 |
+
text = str(text).lower()
|
95 |
+
text = re.sub(r"what's", "what is ", text)
|
96 |
+
text = re.sub(r"\'s", " ", text)
|
97 |
+
text = re.sub(r"\'ve", " have ", text)
|
98 |
+
text = re.sub(r"can't", "can not ", text)
|
99 |
+
text = re.sub(r"n't", " not ", text)
|
100 |
+
text = re.sub(r"i'm", "i am ", text)
|
101 |
+
text = re.sub(r"\'re", " are ", text)
|
102 |
+
text = re.sub(r"\'d", " would ", text)
|
103 |
+
text = re.sub(r"\'ll", " will ", text)
|
104 |
+
text = re.sub(r"\'scuse", " excuse ", text)
|
105 |
+
text = re.sub(r'\W', ' ', text) # Remove non-word characters
|
106 |
+
text = re.sub(r'\s+', ' ', text).strip() # Remove extra spaces
|
107 |
+
return text
|
108 |
+
|
109 |
+
|
110 |
+
def stemming(sentence):
|
111 |
+
return " ".join([stemmer.stem(word) for word in str(sentence).split()])
|
112 |
+
|
113 |
+
|
114 |
+
def preprocess_text(text):
|
115 |
+
text = remove_stopwords(text)
|
116 |
+
text = clean_text(text)
|
117 |
+
text = stemming(text)
|
118 |
+
return text
|
119 |
+
|
120 |
+
|
121 |
+
# Function to get sentiment
|
122 |
+
def get_sentiment(text):
|
123 |
+
score = TextBlob(text).sentiment.polarity
|
124 |
+
if score > 0:
|
125 |
+
return "Positive", score
|
126 |
+
elif score < 0:
|
127 |
+
return "Negative", score
|
128 |
+
else:
|
129 |
+
return "Neutral", score
|
130 |
+
|
131 |
+
|
132 |
+
# Function to moderate text based on toxicity
|
133 |
+
def moderate_text(text, predictions, threshold_moderate=0.5, threshold_delete=0.8):
|
134 |
+
# If binary classification, only check the 'toxic' probability (index 1)
|
135 |
+
if len(predictions) == 2:
|
136 |
+
toxic_prob = predictions[1]
|
137 |
+
if toxic_prob >= threshold_delete:
|
138 |
+
return "*** COMMENT DELETED DUE TO HIGH TOXICITY ***", "delete"
|
139 |
+
elif toxic_prob >= threshold_moderate:
|
140 |
+
# List of potentially toxic words to censor
|
141 |
+
toxic_words = ["stupid", "idiot", "dumb", "hate", "sucks", "terrible",
|
142 |
+
"awful", "garbage", "trash", "pathetic", "ridiculous"]
|
143 |
+
|
144 |
+
words = text.split()
|
145 |
+
moderated_words = []
|
146 |
+
|
147 |
+
for word in words:
|
148 |
+
# Clean word for comparison
|
149 |
+
clean_word = re.sub(r'[^\w\s]', '', word.lower())
|
150 |
+
|
151 |
+
# Check if the word is in the toxic words list
|
152 |
+
if clean_word in toxic_words:
|
153 |
+
# Replace with a more neutral placeholder
|
154 |
+
moderated_words.append("[inappropriate]")
|
155 |
+
else:
|
156 |
+
moderated_words.append(word)
|
157 |
+
|
158 |
+
return " ".join(moderated_words), "moderate"
|
159 |
+
else:
|
160 |
+
return text, "keep"
|
161 |
+
else:
|
162 |
+
# Multi-label: check all classes
|
163 |
+
if any(pred >= threshold_delete for pred in predictions):
|
164 |
+
return "*** COMMENT DELETED DUE TO HIGH TOXICITY ***", "delete"
|
165 |
+
elif any(pred >= threshold_moderate for pred in predictions):
|
166 |
+
# List of potentially toxic words to censor
|
167 |
+
toxic_words = ["stupid", "idiot", "dumb", "hate", "sucks", "terrible",
|
168 |
+
"awful", "garbage", "trash", "pathetic", "ridiculous"]
|
169 |
+
|
170 |
+
words = text.split()
|
171 |
+
moderated_words = []
|
172 |
+
|
173 |
+
for word in words:
|
174 |
+
# Clean word for comparison
|
175 |
+
clean_word = re.sub(r'[^\w\s]', '', word.lower())
|
176 |
+
|
177 |
+
# Check if the word is in the toxic words list
|
178 |
+
if clean_word in toxic_words:
|
179 |
+
# Replace with a more neutral placeholder
|
180 |
+
moderated_words.append("[inappropriate]")
|
181 |
+
else:
|
182 |
+
moderated_words.append(word)
|
183 |
+
|
184 |
+
return " ".join(moderated_words), "moderate"
|
185 |
+
else:
|
186 |
+
return text, "keep"
|
187 |
+
|
188 |
+
|
189 |
+
# Function to train and save the model
|
190 |
+
def train_model(X_train, y_train, model_type='logistic_regression'):
|
191 |
+
st.write("Training model...")
|
192 |
+
|
193 |
+
# Ensure `y_train` has 6 columns
|
194 |
+
label_columns = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']
|
195 |
+
|
196 |
+
# Create missing columns if they don't exist
|
197 |
+
for col in label_columns:
|
198 |
+
if col not in y_train.columns:
|
199 |
+
y_train[col] = 0
|
200 |
+
|
201 |
+
# Ensure columns are in the right order
|
202 |
+
y_train = y_train[label_columns]
|
203 |
+
|
204 |
+
if model_type == 'logistic_regression':
|
205 |
+
pipeline = Pipeline([
|
206 |
+
('tfidf', TfidfVectorizer(stop_words='english', max_features=50000)),
|
207 |
+
('clf', OneVsRestClassifier(LogisticRegression(max_iter=1000), n_jobs=-1))
|
208 |
+
])
|
209 |
+
else: # Naive Bayes
|
210 |
+
pipeline = Pipeline([
|
211 |
+
('tfidf', TfidfVectorizer(stop_words='english', max_features=50000)),
|
212 |
+
('clf', OneVsRestClassifier(MultinomialNB(), n_jobs=-1))
|
213 |
+
])
|
214 |
+
|
215 |
+
pipeline.fit(X_train, y_train)
|
216 |
+
|
217 |
+
return pipeline
|
218 |
+
|
219 |
+
|
220 |
+
|
221 |
+
|
222 |
+
def evaluate_model(pipeline, X_test, y_test):
|
223 |
+
"""
|
224 |
+
Evaluates the given trained pipeline on test data.
|
225 |
+
Returns:
|
226 |
+
accuracy: Accuracy score
|
227 |
+
roc_auc: ROC AUC score
|
228 |
+
predictions: Predicted labels
|
229 |
+
pred_probs: Predicted probabilities
|
230 |
+
fpr: False Positive Rate array (for ROC curve)
|
231 |
+
tpr: True Positive Rate array (for ROC curve)
|
232 |
+
"""
|
233 |
+
|
234 |
+
# Get predictions and prediction probabilities
|
235 |
+
predictions = pipeline.predict(X_test)
|
236 |
+
pred_probs = pipeline.predict_proba(X_test)
|
237 |
+
|
238 |
+
if isinstance(pred_probs, list) and len(pred_probs) == 1:
|
239 |
+
pred_probs = pred_probs[0] # Handle list with 1 array
|
240 |
+
|
241 |
+
# Ensure predictions format matches y_test
|
242 |
+
y_type = type_of_target(y_test)
|
243 |
+
pred_type = type_of_target(predictions)
|
244 |
+
|
245 |
+
if y_type != pred_type:
|
246 |
+
if y_type == "multilabel-indicator" and pred_type == "binary":
|
247 |
+
# Expand binary predictions to multilabel shape
|
248 |
+
predictions = np.array([[pred] * y_test.shape[1] for pred in predictions])
|
249 |
+
elif y_type == "binary" and pred_type == "multilabel-indicator":
|
250 |
+
# Collapse multilabel predictions to binary
|
251 |
+
predictions = predictions[:, 0]
|
252 |
+
|
253 |
+
# Calculate accuracy
|
254 |
+
accuracy = accuracy_score(y_test, predictions)
|
255 |
+
|
256 |
+
# Calculate ROC AUC
|
257 |
+
try:
|
258 |
+
if len(y_test.shape) > 1 and y_test.shape[1] > 1:
|
259 |
+
# Multi-label case
|
260 |
+
roc_auc_sum = 0
|
261 |
+
valid_labels = 0
|
262 |
+
for i in range(y_test.shape[1]):
|
263 |
+
try:
|
264 |
+
roc_auc_sum += roc_auc_score(y_test.iloc[:, i], pred_probs[:, i])
|
265 |
+
valid_labels += 1
|
266 |
+
except Exception:
|
267 |
+
continue
|
268 |
+
roc_auc = roc_auc_sum / valid_labels if valid_labels > 0 else 0.0
|
269 |
+
else:
|
270 |
+
# Binary case
|
271 |
+
roc_auc = roc_auc_score(y_test, pred_probs[:, 1] if pred_probs.ndim > 1 and pred_probs.shape[1] > 1 else pred_probs)
|
272 |
+
except Exception as e:
|
273 |
+
print(f"Warning: Could not compute ROC AUC - {e}")
|
274 |
+
roc_auc = 0.0
|
275 |
+
|
276 |
+
# Calculate FPR, TPR for ROC curve (only for binary classification)
|
277 |
+
try:
|
278 |
+
if len(y_test.shape) == 1 or (len(y_test.shape) > 1 and y_test.shape[1] == 1):
|
279 |
+
fpr, tpr, _ = roc_curve(
|
280 |
+
y_test,
|
281 |
+
pred_probs[:, 1] if pred_probs.ndim > 1 and pred_probs.shape[1] > 1 else pred_probs
|
282 |
+
)
|
283 |
+
else:
|
284 |
+
fpr, tpr = None, None # ROC Curve not available for multilabel
|
285 |
+
except Exception as e:
|
286 |
+
print(f"Warning: Could not compute ROC Curve - {e}")
|
287 |
+
fpr, tpr = None, None
|
288 |
+
|
289 |
+
return accuracy, roc_auc, predictions, pred_probs, fpr, tpr
|
290 |
+
|
291 |
+
|
292 |
+
|
293 |
+
# Function to create a download link for the trained model
|
294 |
+
def get_model_download_link(model, filename):
|
295 |
+
model_bytes = pickle.dumps(model)
|
296 |
+
b64 = base64.b64encode(model_bytes).decode()
|
297 |
+
href = f'<a href="data:file/pickle;base64,{b64}" download="{filename}">Download Trained Model</a>'
|
298 |
+
return href
|
299 |
+
|
300 |
+
|
301 |
+
# Function to plot toxicity distribution
|
302 |
+
def plot_toxicity_distribution(df, toxicity_columns):
|
303 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
304 |
+
|
305 |
+
x = df[toxicity_columns].sum()
|
306 |
+
sns.barplot(x=x.index, y=x.values, alpha=0.8, palette='viridis', ax=ax)
|
307 |
+
|
308 |
+
plt.title('Toxicity Distribution')
|
309 |
+
plt.ylabel('Count')
|
310 |
+
plt.xlabel('Toxicity Category')
|
311 |
+
plt.xticks(rotation=45)
|
312 |
+
|
313 |
+
return fig
|
314 |
+
|
315 |
+
|
316 |
+
# Function to provide sample data format
|
317 |
+
def show_sample_data_format():
|
318 |
+
st.subheader("Sample Data Format")
|
319 |
+
|
320 |
+
# Create sample dataframe
|
321 |
+
sample_data = {
|
322 |
+
'comment_text': [
|
323 |
+
"This is a normal comment.",
|
324 |
+
"This is a toxic comment you idiot!",
|
325 |
+
"You're all worthless and should die.",
|
326 |
+
"I respectfully disagree with your point."
|
327 |
+
],
|
328 |
+
'toxic': [0, 1, 1, 0],
|
329 |
+
'severe_toxic': [0, 0, 1, 0],
|
330 |
+
'obscene': [0, 1, 0, 0],
|
331 |
+
'threat': [0, 0, 1, 0],
|
332 |
+
'insult': [0, 1, 1, 0],
|
333 |
+
'identity_hate': [0, 0, 0, 0]
|
334 |
+
}
|
335 |
+
|
336 |
+
sample_df = pd.DataFrame(sample_data)
|
337 |
+
st.dataframe(sample_df)
|
338 |
+
|
339 |
+
# Create download link for sample data
|
340 |
+
csv = sample_df.to_csv(index=False)
|
341 |
+
b64 = base64.b64encode(csv.encode()).decode()
|
342 |
+
href = f'<a href="data:file/csv;base64,{b64}" download="sample_toxic_data.csv">Download Sample CSV</a>'
|
343 |
+
st.markdown(href, unsafe_allow_html=True)
|
344 |
+
|
345 |
+
st.info("""
|
346 |
+
Your CSV file should contain:
|
347 |
+
1. A column with comment text
|
348 |
+
2. One or more columns with binary values (0 or 1) for each toxicity category
|
349 |
+
""")
|
350 |
+
|
351 |
+
|
352 |
+
# Function to validate dataset
|
353 |
+
def validate_dataset(df, comment_column, toxicity_columns):
|
354 |
+
issues = []
|
355 |
+
|
356 |
+
# Check if comment column exists
|
357 |
+
if comment_column not in df.columns:
|
358 |
+
issues.append(f"Comment column '{comment_column}' not found in the dataset")
|
359 |
+
|
360 |
+
# Check if toxicity columns exist
|
361 |
+
missing_columns = [col for col in toxicity_columns if col not in df.columns]
|
362 |
+
if missing_columns:
|
363 |
+
issues.append(f"Missing toxicity columns: {', '.join(missing_columns)}")
|
364 |
+
|
365 |
+
# Check if values in toxicity columns are valid (0 or 1)
|
366 |
+
for col in toxicity_columns:
|
367 |
+
if col in df.columns:
|
368 |
+
# Check for non-numeric values
|
369 |
+
if not pd.api.types.is_numeric_dtype(df[col]):
|
370 |
+
issues.append(f"Column '{col}' contains non-numeric values")
|
371 |
+
else:
|
372 |
+
# Check for values other than 0 and 1
|
373 |
+
invalid_values = df[col].dropna().apply(lambda x: x not in [0, 1, 0.0, 1.0])
|
374 |
+
if invalid_values.any():
|
375 |
+
issues.append(f"Column '{col}' contains values other than 0 and 1")
|
376 |
+
|
377 |
+
# Check for empty data
|
378 |
+
if df.empty:
|
379 |
+
issues.append("Dataset is empty")
|
380 |
+
elif df[comment_column].isna().all():
|
381 |
+
issues.append("Comment column contains no data")
|
382 |
+
|
383 |
+
return issues
|
384 |
+
|
385 |
+
|
386 |
+
# Function to extract predictions from model output
|
387 |
+
def extract_predictions(predictions_proba, toxicity_categories):
|
388 |
+
"""
|
389 |
+
Helper function to extract probabilities from model output,
|
390 |
+
handling different output formats.
|
391 |
+
"""
|
392 |
+
# Debug information
|
393 |
+
if st.session_state.debug_mode:
|
394 |
+
st.write(f"Predictions type: {type(predictions_proba)}")
|
395 |
+
st.write(
|
396 |
+
f"Predictions shape/length: {np.shape(predictions_proba) if hasattr(predictions_proba, 'shape') else len(predictions_proba)}")
|
397 |
+
|
398 |
+
# Case 1: List of arrays with one element per toxicity category
|
399 |
+
if isinstance(predictions_proba, list) and len(predictions_proba) == len(toxicity_categories):
|
400 |
+
return [pred_array[:, 1][0] if pred_array.shape[1] > 1 else pred_array[0] for pred_array in predictions_proba]
|
401 |
+
|
402 |
+
# Case 2: List with a single array (common for OneVsRestClassifier)
|
403 |
+
elif isinstance(predictions_proba, list) and len(predictions_proba) == 1:
|
404 |
+
pred_array = predictions_proba[0]
|
405 |
+
# If it's a 2D array with number of columns equal to number of categories
|
406 |
+
if len(pred_array.shape) == 2 and pred_array.shape[1] == len(toxicity_categories):
|
407 |
+
return pred_array[0] # Return first row, which contains all probabilities
|
408 |
+
# If it's a 2D array with 2 columns per category (common binary classifier output)
|
409 |
+
elif len(pred_array.shape) == 2 and pred_array.shape[1] == 2:
|
410 |
+
return np.array([pred_array[0, 1]])
|
411 |
+
|
412 |
+
# Case 3: Direct numpy array
|
413 |
+
elif isinstance(predictions_proba, np.ndarray):
|
414 |
+
# If it's already the right shape
|
415 |
+
if len(predictions_proba.shape) == 2 and predictions_proba.shape[1] == len(toxicity_categories):
|
416 |
+
return predictions_proba[0]
|
417 |
+
# If it's a 2D array with two columns (binary classification)
|
418 |
+
elif len(predictions_proba.shape) == 2 and predictions_proba.shape[1] == 2:
|
419 |
+
# For binary classification, return the probability of positive class
|
420 |
+
return np.array([predictions_proba[0, 1]])
|
421 |
+
|
422 |
+
# If prediction format isn't recognized, return a repeated array of single probability
|
423 |
+
# This handles the case where we only have one prediction but need to repeat it
|
424 |
+
if isinstance(predictions_proba, list) and len(predictions_proba) == 1:
|
425 |
+
single_prob = predictions_proba[0]
|
426 |
+
if hasattr(single_prob, 'shape') and len(single_prob.shape) == 2 and single_prob.shape[1] == 2:
|
427 |
+
# Take positive class probability and repeat for all categories
|
428 |
+
return np.full(len(toxicity_categories), single_prob[0, 1])
|
429 |
+
|
430 |
+
# Last resort fallback
|
431 |
+
st.warning(f"Unexpected prediction format. Creating default predictions.")
|
432 |
+
return np.zeros(len(toxicity_categories))
|
433 |
+
|
434 |
+
|
435 |
+
def display_classification_result(result):
|
436 |
+
st.subheader("Classification Result")
|
437 |
+
|
438 |
+
# Show original and moderated text side by side
|
439 |
+
col1, col2 = st.columns(2)
|
440 |
+
with col1:
|
441 |
+
st.markdown("**Original Text**")
|
442 |
+
st.code(result["original_text"], language="text")
|
443 |
+
with col2:
|
444 |
+
st.markdown("**Moderated Text**")
|
445 |
+
st.code(result["moderated_text"], language="text")
|
446 |
+
|
447 |
+
# Show action with color
|
448 |
+
action = result["action"]
|
449 |
+
if action == "keep":
|
450 |
+
st.success("✅ This comment is allowed (Non-toxic).")
|
451 |
+
elif action == "moderate":
|
452 |
+
st.warning("⚠️ This comment is moderated (Potentially toxic).")
|
453 |
+
elif action == "delete":
|
454 |
+
st.error("🚫 This comment is deleted (Highly toxic).")
|
455 |
+
|
456 |
+
# Show toxicity scores
|
457 |
+
st.markdown("**Toxicity Scores:**")
|
458 |
+
score_cols = st.columns(len(result["toxicity_scores"]))
|
459 |
+
for i, (label, score) in enumerate(result["toxicity_scores"].items()):
|
460 |
+
score_cols[i].metric(label.capitalize(), f"{score:.2%}")
|
461 |
+
|
462 |
+
# Show sentiment if available
|
463 |
+
if "sentiment" in result:
|
464 |
+
st.markdown("**Sentiment Analysis:**")
|
465 |
+
st.info(f"{result['sentiment']['label']} (score: {result['sentiment']['score']:.2%})")
|
466 |
+
|
467 |
+
|
468 |
+
def moderate_comment(comment, model, sentiment_model=None):
|
469 |
+
"""
|
470 |
+
Moderate a single comment using the trained model and optionally BERT sentiment analysis.
|
471 |
+
|
472 |
+
Args:
|
473 |
+
comment: The comment text to moderate
|
474 |
+
model: The trained model to use for toxicity detection
|
475 |
+
sentiment_model: Optional BERT model for sentiment analysis
|
476 |
+
|
477 |
+
Returns:
|
478 |
+
Dictionary containing moderation results
|
479 |
+
"""
|
480 |
+
# Preprocess the comment
|
481 |
+
processed_text = preprocess_text(comment)
|
482 |
+
|
483 |
+
# Get model predictions
|
484 |
+
predictions = model.predict_proba([processed_text])[0]
|
485 |
+
|
486 |
+
# Get sentiment if BERT model is available
|
487 |
+
sentiment = None
|
488 |
+
if sentiment_model:
|
489 |
+
sentiment = sentiment_model(comment)[0]
|
490 |
+
|
491 |
+
# Moderate the text
|
492 |
+
moderated_text, action = moderate_text(comment, predictions)
|
493 |
+
|
494 |
+
# Prepare result
|
495 |
+
result = {
|
496 |
+
"original_text": comment,
|
497 |
+
"moderated_text": moderated_text,
|
498 |
+
"action": action,
|
499 |
+
"toxicity_scores": {}
|
500 |
+
}
|
501 |
+
|
502 |
+
# Handle both binary and multi-class predictions
|
503 |
+
if len(predictions) == 2: # Binary classification
|
504 |
+
result["toxicity_scores"] = {
|
505 |
+
"toxic": float(predictions[1]), # Probability of positive class
|
506 |
+
"non_toxic": float(predictions[0]) # Probability of negative class
|
507 |
+
}
|
508 |
+
else: # Multi-class classification
|
509 |
+
# Define the toxicity categories
|
510 |
+
categories = ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"]
|
511 |
+
|
512 |
+
# Add scores for each category that exists in the predictions
|
513 |
+
for i, category in enumerate(categories):
|
514 |
+
if i < len(predictions):
|
515 |
+
result["toxicity_scores"][category] = float(predictions[i])
|
516 |
+
|
517 |
+
if sentiment:
|
518 |
+
result["sentiment"] = {
|
519 |
+
"label": sentiment["label"],
|
520 |
+
"score": float(sentiment["score"])
|
521 |
+
}
|
522 |
+
|
523 |
+
return result
|
524 |
+
|
525 |
+
|
526 |
+
# --- Bias Detection Module ---
|
527 |
+
def detect_subgroup(text):
|
528 |
+
gender_keywords = ["he", "she", "him", "her", "man", "woman", "boy", "girl", "male", "female"]
|
529 |
+
ethnicity_keywords = [
|
530 |
+
"asian", "black", "white", "hispanic", "latino", "indian", "african", "european", "arab", "jewish", "muslim", "christian"
|
531 |
+
]
|
532 |
+
text_lower = text.lower()
|
533 |
+
subgroups = set()
|
534 |
+
if any(word in text_lower for word in gender_keywords):
|
535 |
+
subgroups.add("gender")
|
536 |
+
if any(word in text_lower for word in ethnicity_keywords):
|
537 |
+
subgroups.add("ethnicity")
|
538 |
+
return list(subgroups)
|
539 |
+
|
540 |
+
def bias_report(X, y_true, y_pred, text_column_name):
|
541 |
+
# X: DataFrame with text column
|
542 |
+
# y_pred: predicted labels (same shape as y_true)
|
543 |
+
# y_true: true labels (same shape as y_pred)
|
544 |
+
# text_column_name: name of the text column
|
545 |
+
results = []
|
546 |
+
for idx, row in X.iterrows():
|
547 |
+
subgroups = detect_subgroup(row[text_column_name])
|
548 |
+
if subgroups:
|
549 |
+
for subgroup in subgroups:
|
550 |
+
results.append({
|
551 |
+
"subgroup": subgroup,
|
552 |
+
"is_toxic": int(y_pred[idx].sum() > 0) if len(y_pred.shape) > 1 else int(y_pred[idx] > 0)
|
553 |
+
})
|
554 |
+
if not results:
|
555 |
+
return "No sensitive subgroups detected in the evaluation set."
|
556 |
+
df = pd.DataFrame(results)
|
557 |
+
report = ""
|
558 |
+
for subgroup in df["subgroup"].unique():
|
559 |
+
total = (df["subgroup"] == subgroup).sum()
|
560 |
+
toxic = df[(df["subgroup"] == subgroup) & (df["is_toxic"] == 1)].shape[0]
|
561 |
+
rate = toxic / total if total > 0 else 0
|
562 |
+
report += f"- **{subgroup.capitalize()}**: {toxic}/{total} ({rate:.1%}) flagged as toxic\n"
|
563 |
+
return report
|
564 |
+
|
565 |
+
|
566 |
+
# Streamlit app
|
567 |
+
def main():
|
568 |
+
st.set_page_config(
|
569 |
+
page_title="Toxic Comment Classifier",
|
570 |
+
page_icon="🧊",
|
571 |
+
layout="wide",
|
572 |
+
initial_sidebar_state="expanded",
|
573 |
+
)
|
574 |
+
|
575 |
+
col1, col2 = st.columns([1, 4]) # Adjust the ratio as needed
|
576 |
+
|
577 |
+
with col1:
|
578 |
+
st.image("logo.jpeg", width=100) # Smaller width fits better
|
579 |
+
|
580 |
+
with col2:
|
581 |
+
st.title("Toxic Comment Classifier")
|
582 |
+
|
583 |
+
|
584 |
+
# Initialize session state variables if they don't exist
|
585 |
+
if 'data' not in st.session_state:
|
586 |
+
st.session_state.data = None
|
587 |
+
if 'model' not in st.session_state:
|
588 |
+
st.session_state.model = None
|
589 |
+
if 'vectorizer' not in st.session_state:
|
590 |
+
st.session_state.vectorizer = None
|
591 |
+
if 'predictions' not in st.session_state:
|
592 |
+
st.session_state.predictions = None
|
593 |
+
if 'lightweight_model' not in st.session_state:
|
594 |
+
st.session_state.lightweight_model = None
|
595 |
+
if 'bert_model' not in st.session_state:
|
596 |
+
st.session_state.bert_model = None
|
597 |
+
|
598 |
+
# Create sidebar navigation
|
599 |
+
st.sidebar.title("Navigation")
|
600 |
+
page = st.sidebar.radio(
|
601 |
+
"Select a page",
|
602 |
+
["Home", "Data Preprocessing", "Model Training", "Model Evaluation", "Prediction", "Visualization"]
|
603 |
+
)
|
604 |
+
|
605 |
+
# Home page
|
606 |
+
if page == "Home":
|
607 |
+
|
608 |
+
st.header("Home")
|
609 |
+
st.write("""
|
610 |
+
Welcome to the Toxic Comment Classifier application. This tool helps you to:
|
611 |
+
1. Upload and preprocess data
|
612 |
+
2. Train a machine learning model to detect toxic comments
|
613 |
+
3. Evaluate model performance
|
614 |
+
4. Make predictions on new data
|
615 |
+
5. Visualize results
|
616 |
+
|
617 |
+
Please use the sidebar navigation to get started.
|
618 |
+
""")
|
619 |
+
|
620 |
+
# Add option to load BERT sentiment model
|
621 |
+
if st.sidebar.checkbox("Use BERT for Sentiment Analysis"):
|
622 |
+
st.subheader("BERT-Based Sentiment Analysis")
|
623 |
+
st.write("This option uses a pre-trained BERT model for advanced sentiment analysis.")
|
624 |
+
|
625 |
+
if st.button("Load BERT Model"):
|
626 |
+
with st.spinner("Loading BERT model..."):
|
627 |
+
st.session_state.bert_model = load_bert_model()
|
628 |
+
st.write("DEBUG: bert_model in session_state after loading:", st.session_state.bert_model)
|
629 |
+
|
630 |
+
# Sample data section
|
631 |
+
st.subheader("Sample Data Format")
|
632 |
+
show_sample_data_format()
|
633 |
+
|
634 |
+
# Single comment moderation
|
635 |
+
st.subheader("Try Comment Moderation")
|
636 |
+
comment = st.text_area("Enter a comment to moderate:")
|
637 |
+
|
638 |
+
col1, col2 = st.columns(2)
|
639 |
+
with col1:
|
640 |
+
use_default_model = st.checkbox("Use built-in model for demo", value=True)
|
641 |
+
|
642 |
+
with col2:
|
643 |
+
use_bert = st.checkbox("Use BERT model for sentiment (if loaded)", value=False)
|
644 |
+
|
645 |
+
if st.button("Moderate Comment"):
|
646 |
+
if comment:
|
647 |
+
with st.spinner("Analyzing comment..."):
|
648 |
+
st.write("DEBUG: bert_model in session_state before use:", st.session_state.bert_model)
|
649 |
+
sentiment_model = st.session_state.bert_model if use_bert and st.session_state.bert_model is not None else None
|
650 |
+
|
651 |
+
if use_default_model or st.session_state.model or st.session_state.lightweight_model:
|
652 |
+
model_to_use = None
|
653 |
+
if st.session_state.model:
|
654 |
+
model_to_use = st.session_state.model
|
655 |
+
elif st.session_state.lightweight_model:
|
656 |
+
model_to_use = st.session_state.lightweight_model
|
657 |
+
|
658 |
+
result = moderate_comment(comment, model_to_use, sentiment_model)
|
659 |
+
|
660 |
+
display_classification_result(result)
|
661 |
+
else:
|
662 |
+
st.error("No model available. Please train a model first or enable the demo model.")
|
663 |
+
else:
|
664 |
+
st.warning("Please enter a comment to moderate.")
|
665 |
+
|
666 |
+
# Data Preprocessing page
|
667 |
+
elif page == "Data Preprocessing":
|
668 |
+
st.header("Data Preprocessing")
|
669 |
+
|
670 |
+
# File upload
|
671 |
+
st.subheader("Upload Dataset")
|
672 |
+
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
673 |
+
|
674 |
+
if uploaded_file is not None:
|
675 |
+
try:
|
676 |
+
# Load data
|
677 |
+
data = pd.read_csv(uploaded_file)
|
678 |
+
|
679 |
+
# Display raw data
|
680 |
+
st.subheader("Raw Data")
|
681 |
+
st.write(data.head())
|
682 |
+
|
683 |
+
# Validate the dataset
|
684 |
+
validation_result = validate_dataset(data, 'comment_text', ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'])
|
685 |
+
|
686 |
+
if not validation_result: # Empty list means no issues
|
687 |
+
st.success("Dataset is valid!")
|
688 |
+
|
689 |
+
# Store data in session state
|
690 |
+
st.session_state.data = data
|
691 |
+
|
692 |
+
# Data cleaning
|
693 |
+
st.subheader("Data Cleaning")
|
694 |
+
st.write("Select columns to include in the analysis:")
|
695 |
+
|
696 |
+
# Get all columns
|
697 |
+
all_columns = data.columns.tolist()
|
698 |
+
default_selected = ["comment_text", "toxic", "severe_toxic", "obscene", "threat", "insult",
|
699 |
+
"identity_hate"]
|
700 |
+
default_selected = [col for col in default_selected if col in all_columns]
|
701 |
+
|
702 |
+
selected_columns = st.multiselect(
|
703 |
+
"Select columns",
|
704 |
+
options=all_columns,
|
705 |
+
default=default_selected
|
706 |
+
)
|
707 |
+
|
708 |
+
if selected_columns:
|
709 |
+
# Filter data by selected columns
|
710 |
+
filtered_data = data[selected_columns]
|
711 |
+
|
712 |
+
# Display cleaned data
|
713 |
+
st.subheader("Filtered Data")
|
714 |
+
st.write(filtered_data.head())
|
715 |
+
|
716 |
+
# Display data statistics
|
717 |
+
st.subheader("Data Statistics")
|
718 |
+
st.write(filtered_data.describe())
|
719 |
+
|
720 |
+
# Check for missing values
|
721 |
+
st.subheader("Missing Values")
|
722 |
+
missing_values = filtered_data.isnull().sum()
|
723 |
+
st.write(missing_values)
|
724 |
+
|
725 |
+
# Handle missing values if any
|
726 |
+
if missing_values.sum() > 0:
|
727 |
+
st.warning("There are missing values in the dataset.")
|
728 |
+
|
729 |
+
if st.button("Handle Missing Values"):
|
730 |
+
# Fill missing text with empty string
|
731 |
+
text_columns = [col for col in selected_columns if filtered_data[col].dtype == 'object']
|
732 |
+
for col in text_columns:
|
733 |
+
filtered_data[col] = filtered_data[col].fillna("")
|
734 |
+
|
735 |
+
# Fill missing numerical values with 0
|
736 |
+
numerical_columns = [col for col in selected_columns if
|
737 |
+
filtered_data[col].dtype != 'object']
|
738 |
+
for col in numerical_columns:
|
739 |
+
filtered_data[col] = filtered_data[col].fillna(0)
|
740 |
+
|
741 |
+
st.success("Missing values handled!")
|
742 |
+
st.write(filtered_data.isnull().sum())
|
743 |
+
|
744 |
+
# Text preprocessing
|
745 |
+
st.subheader("Text Preprocessing")
|
746 |
+
|
747 |
+
# Select text column
|
748 |
+
text_columns = [col for col in selected_columns if filtered_data[col].dtype == 'object']
|
749 |
+
|
750 |
+
if text_columns:
|
751 |
+
text_column = st.selectbox("Select text column for preprocessing", text_columns)
|
752 |
+
|
753 |
+
# Show sample of original text
|
754 |
+
st.write("Sample original text:")
|
755 |
+
sample_texts = filtered_data[text_column].head(3).tolist()
|
756 |
+
for i, text in enumerate(sample_texts):
|
757 |
+
st.text(f"Text {i + 1}: {text[:200]}...")
|
758 |
+
|
759 |
+
# Preprocess text
|
760 |
+
if st.button("Preprocess Text"):
|
761 |
+
with st.spinner("Preprocessing text..."):
|
762 |
+
filtered_data['processed_text'] = filtered_data[text_column].apply(preprocess_text)
|
763 |
+
|
764 |
+
# Show sample of preprocessed text
|
765 |
+
st.write("Sample preprocessed text:")
|
766 |
+
sample_preprocessed = filtered_data['processed_text'].head(3).tolist()
|
767 |
+
for i, text in enumerate(sample_preprocessed):
|
768 |
+
st.text(f"Processed Text {i + 1}: {text[:200]}...")
|
769 |
+
|
770 |
+
# Store preprocessed data
|
771 |
+
st.session_state.data = filtered_data
|
772 |
+
st.success("Text preprocessing completed!")
|
773 |
+
else:
|
774 |
+
st.warning("No text columns found in the selected columns.")
|
775 |
+
else:
|
776 |
+
st.warning("Please select at least one column.")
|
777 |
+
else:
|
778 |
+
st.error(f"Dataset validation failed: {validation_result['reason']}")
|
779 |
+
st.warning("Please upload a valid dataset.")
|
780 |
+
|
781 |
+
except Exception as e:
|
782 |
+
st.error(f"Error loading data: {e}")
|
783 |
+
st.warning("Please upload a valid CSV file.")
|
784 |
+
else:
|
785 |
+
st.info("Please upload a CSV file to begin preprocessing.")
|
786 |
+
|
787 |
+
# Model Training page
|
788 |
+
elif page == "Model Training":
|
789 |
+
st.header("Model Training")
|
790 |
+
|
791 |
+
# Check if data is available
|
792 |
+
if st.session_state.data is not None:
|
793 |
+
# Display data info
|
794 |
+
st.subheader("Dataset Information")
|
795 |
+
st.write(f"Number of samples: {len(st.session_state.data)}")
|
796 |
+
|
797 |
+
if 'processed_text' in st.session_state.data.columns:
|
798 |
+
st.write("Text preprocessing: Done")
|
799 |
+
else:
|
800 |
+
st.warning("Text preprocessing is not done. Please preprocess the data first.")
|
801 |
+
|
802 |
+
# Model training options
|
803 |
+
st.subheader("Training Options")
|
804 |
+
|
805 |
+
# Select target column
|
806 |
+
numerical_columns = [col for col in st.session_state.data.columns if
|
807 |
+
st.session_state.data[col].dtype != 'object']
|
808 |
+
|
809 |
+
if numerical_columns:
|
810 |
+
target_column = st.selectbox("Select target column", numerical_columns)
|
811 |
+
|
812 |
+
# Set training parameters
|
813 |
+
st.write("Training Parameters:")
|
814 |
+
col1, col2 = st.columns(2)
|
815 |
+
|
816 |
+
with col1:
|
817 |
+
test_size = st.slider("Test Size", 0.1, 0.5, 0.2, 0.05)
|
818 |
+
|
819 |
+
with col2:
|
820 |
+
random_state = st.number_input("Random State", 0, 100, 42, 1)
|
821 |
+
|
822 |
+
# Model selection
|
823 |
+
model_type = st.radio(
|
824 |
+
"Select model type",
|
825 |
+
["Standard Model", "Lightweight Model"]
|
826 |
+
)
|
827 |
+
|
828 |
+
# Train model button
|
829 |
+
if st.button("Train Model"):
|
830 |
+
with st.spinner("Training model..."):
|
831 |
+
# Check if processed text is available
|
832 |
+
if 'processed_text' in st.session_state.data.columns:
|
833 |
+
try:
|
834 |
+
if model_type == "Standard Model":
|
835 |
+
# Train standard model
|
836 |
+
X_train = st.session_state.data['processed_text']
|
837 |
+
y_train = st.session_state.data[[target_column]]
|
838 |
+
model = train_model(X_train, y_train, 'logistic_regression')
|
839 |
+
|
840 |
+
# Store model in session state
|
841 |
+
st.session_state.model = model
|
842 |
+
st.session_state.vectorizer = None # Vectorizer is part of the pipeline
|
843 |
+
|
844 |
+
st.success("Model training completed!")
|
845 |
+
else:
|
846 |
+
# Train lightweight model
|
847 |
+
lightweight_model = train_lightweight_model(
|
848 |
+
st.session_state.data,
|
849 |
+
'processed_text',
|
850 |
+
target_column
|
851 |
+
)
|
852 |
+
|
853 |
+
# Store lightweight model in session state
|
854 |
+
st.session_state.lightweight_model = lightweight_model
|
855 |
+
|
856 |
+
st.success("Lightweight model training completed!")
|
857 |
+
|
858 |
+
except Exception as e:
|
859 |
+
st.error(f"Error training model: {e}")
|
860 |
+
else:
|
861 |
+
st.error("Processed text not found. Please preprocess the data first.")
|
862 |
+
else:
|
863 |
+
st.warning("No numerical columns found in the dataset. Please ensure you have target columns.")
|
864 |
+
else:
|
865 |
+
st.info("Please upload and preprocess data before training a model.")
|
866 |
+
|
867 |
+
# Model Evaluation page
|
868 |
+
elif page == "Model Evaluation":
|
869 |
+
st.header("Model Evaluation")
|
870 |
+
|
871 |
+
# Check if model is available
|
872 |
+
model_available = st.session_state.model is not None or st.session_state.lightweight_model is not None
|
873 |
+
|
874 |
+
if model_available:
|
875 |
+
# Display model info
|
876 |
+
st.subheader("Model Information")
|
877 |
+
if st.session_state.model is not None:
|
878 |
+
st.write("Standard model is trained and ready.")
|
879 |
+
if st.session_state.lightweight_model is not None:
|
880 |
+
st.write("Lightweight model is trained and ready.")
|
881 |
+
|
882 |
+
# Select model to evaluate
|
883 |
+
model_choice = None
|
884 |
+
if st.session_state.model is not None and st.session_state.lightweight_model is not None:
|
885 |
+
model_choice = st.radio(
|
886 |
+
"Select model to evaluate",
|
887 |
+
["Standard Model", "Lightweight Model"]
|
888 |
+
)
|
889 |
+
|
890 |
+
# Model evaluation
|
891 |
+
st.subheader("Evaluation Options")
|
892 |
+
|
893 |
+
# Set evaluation parameters
|
894 |
+
st.write("Evaluation Parameters:")
|
895 |
+
col1, col2 = st.columns(2)
|
896 |
+
|
897 |
+
with col1:
|
898 |
+
test_size = st.slider("Test Size (Evaluation)", 0.1, 0.5, 0.2, 0.05)
|
899 |
+
|
900 |
+
with col2:
|
901 |
+
random_state = st.number_input("Random State (Evaluation)", 0, 100, 42, 1)
|
902 |
+
|
903 |
+
# Target column selection
|
904 |
+
if st.session_state.data is not None:
|
905 |
+
numerical_columns = [col for col in st.session_state.data.columns if
|
906 |
+
st.session_state.data[col].dtype != 'object']
|
907 |
+
|
908 |
+
if numerical_columns:
|
909 |
+
target_column = st.selectbox("Select target column for evaluation", numerical_columns)
|
910 |
+
|
911 |
+
# Evaluate model button
|
912 |
+
if st.button("Evaluate Model"):
|
913 |
+
with st.spinner("Evaluating model..."):
|
914 |
+
try:
|
915 |
+
# Determine which model to evaluate
|
916 |
+
model_to_evaluate = None
|
917 |
+
if model_choice == "Lightweight Model" or (
|
918 |
+
model_choice is None and st.session_state.model is None):
|
919 |
+
model_to_evaluate = st.session_state.lightweight_model
|
920 |
+
else:
|
921 |
+
model_to_evaluate = st.session_state.model
|
922 |
+
|
923 |
+
# 1️⃣ Evaluate model
|
924 |
+
X_test = st.session_state.data['processed_text']
|
925 |
+
y_test = st.session_state.data[[target_column]]
|
926 |
+
|
927 |
+
accuracy, roc_auc, predictions, pred_probs, fpr, tpr = evaluate_model(model_to_evaluate,
|
928 |
+
X_test, y_test)
|
929 |
+
|
930 |
+
# 2️⃣ Calculate additional metrics
|
931 |
+
precision = precision_score(y_test, predictions, average='weighted', zero_division=0)
|
932 |
+
recall = recall_score(y_test, predictions, average='weighted', zero_division=0)
|
933 |
+
f1 = f1_score(y_test, predictions, average='weighted', zero_division=0)
|
934 |
+
conf_matrix = confusion_matrix(y_test, predictions)
|
935 |
+
classification_rep = classification_report(y_test, predictions, zero_division=0)
|
936 |
+
|
937 |
+
# 3️⃣ Display evaluation metrics
|
938 |
+
st.subheader("Evaluation Results")
|
939 |
+
metrics_df = pd.DataFrame({
|
940 |
+
'Metric': ['Accuracy', 'Precision', 'Recall', 'F1 Score', 'ROC AUC'],
|
941 |
+
'Value': [accuracy, precision, recall, f1, roc_auc]
|
942 |
+
})
|
943 |
+
st.table(metrics_df)
|
944 |
+
|
945 |
+
# 4️⃣ Confusion Matrix
|
946 |
+
st.subheader("Confusion Matrix")
|
947 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
948 |
+
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', ax=ax, cbar=False,
|
949 |
+
annot_kws={"size": 16})
|
950 |
+
plt.xlabel('Predicted')
|
951 |
+
plt.ylabel('Actual')
|
952 |
+
plt.title('Confusion Matrix')
|
953 |
+
st.pyplot(fig)
|
954 |
+
|
955 |
+
# 5️⃣ ROC Curve
|
956 |
+
st.subheader("ROC Curve")
|
957 |
+
if fpr is not None and tpr is not None:
|
958 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
959 |
+
ax.plot(fpr, tpr, label=f'ROC Curve (AUC = {roc_auc:.2f})')
|
960 |
+
ax.plot([0, 1], [0, 1], 'k--')
|
961 |
+
ax.set_xlabel('False Positive Rate')
|
962 |
+
ax.set_ylabel('True Positive Rate')
|
963 |
+
ax.set_title('ROC Curve')
|
964 |
+
ax.legend(loc="lower right")
|
965 |
+
st.pyplot(fig)
|
966 |
+
else:
|
967 |
+
st.info("ROC curve is not available for multi-label classification.")
|
968 |
+
|
969 |
+
# 6️⃣ Classification Report
|
970 |
+
st.subheader("Classification Report")
|
971 |
+
st.text(classification_rep)
|
972 |
+
|
973 |
+
except Exception as e:
|
974 |
+
st.error(f"Error evaluating model: {e}")
|
975 |
+
|
976 |
+
# 6️⃣ Classification Report
|
977 |
+
st.subheader("Classification Report")
|
978 |
+
st.text(classification_rep)
|
979 |
+
|
980 |
+
# ✅ Always show bias detection report if possible
|
981 |
+
# Bias Detection Report
|
982 |
+
st.subheader("Bias Detection Report")
|
983 |
+
if 'comment_text' in st.session_state.data.columns:
|
984 |
+
bias_summary = bias_report(
|
985 |
+
st.session_state.data[["comment_text"]].reset_index(drop=True),
|
986 |
+
y_test.reset_index(drop=True),
|
987 |
+
predictions,
|
988 |
+
"comment_text" # Add the text_column_name parameter
|
989 |
+
)
|
990 |
+
st.markdown(bias_summary)
|
991 |
+
else:
|
992 |
+
st.info("No comment_text column found for bias analysis.")
|
993 |
+
|
994 |
+
|
995 |
+
|
996 |
+
except Exception as e:
|
997 |
+
st.error(f"Error evaluating model: {e}")
|
998 |
+
else:
|
999 |
+
st.warning("No numerical columns found in the dataset. Please ensure you have target columns.")
|
1000 |
+
else:
|
1001 |
+
st.warning("Dataset not available. Please upload and preprocess data first.")
|
1002 |
+
|
1003 |
+
# Model download
|
1004 |
+
st.subheader("Model Download")
|
1005 |
+
|
1006 |
+
# Create download button
|
1007 |
+
model_to_download = None
|
1008 |
+
if model_choice == "Lightweight Model" or (model_choice is None and st.session_state.model is None):
|
1009 |
+
model_to_download = st.session_state.lightweight_model
|
1010 |
+
else:
|
1011 |
+
model_to_download = st.session_state.model
|
1012 |
+
|
1013 |
+
if model_to_download is not None:
|
1014 |
+
# Determine the appropriate filename based on model type
|
1015 |
+
filename = "lightweight_model.pkl" if model_choice == "Lightweight Model" or (model_choice is None and st.session_state.model is None) else "standard_model.pkl"
|
1016 |
+
download_link = get_model_download_link(model_to_download, filename)
|
1017 |
+
st.markdown(download_link, unsafe_allow_html=True)
|
1018 |
+
else:
|
1019 |
+
st.info("Please train a model before evaluation.")
|
1020 |
+
|
1021 |
+
# Prediction page
|
1022 |
+
elif page == "Prediction":
|
1023 |
+
st.header("Prediction")
|
1024 |
+
|
1025 |
+
# Check if model is available
|
1026 |
+
model_available = st.session_state.model is not None or st.session_state.lightweight_model is not None
|
1027 |
+
|
1028 |
+
if model_available:
|
1029 |
+
# Display model info
|
1030 |
+
st.subheader("Model Information")
|
1031 |
+
if st.session_state.model is not None:
|
1032 |
+
st.write("Standard model is trained and ready.")
|
1033 |
+
if st.session_state.lightweight_model is not None:
|
1034 |
+
st.write("Lightweight model is trained and ready.")
|
1035 |
+
|
1036 |
+
# Select model to use
|
1037 |
+
model_choice = None
|
1038 |
+
if st.session_state.model is not None and st.session_state.lightweight_model is not None:
|
1039 |
+
model_choice = st.radio(
|
1040 |
+
"Select model for prediction",
|
1041 |
+
["Standard Model", "Lightweight Model"]
|
1042 |
+
)
|
1043 |
+
|
1044 |
+
# Determine which model to use
|
1045 |
+
model_to_use = None
|
1046 |
+
if model_choice == "Lightweight Model" or (model_choice is None and st.session_state.model is None):
|
1047 |
+
model_to_use = st.session_state.lightweight_model
|
1048 |
+
else:
|
1049 |
+
model_to_use = st.session_state.model
|
1050 |
+
|
1051 |
+
# Prediction options
|
1052 |
+
st.subheader("Make Predictions")
|
1053 |
+
|
1054 |
+
prediction_type = st.radio(
|
1055 |
+
"Select prediction type",
|
1056 |
+
["Single Comment", "Multiple Comments"]
|
1057 |
+
)
|
1058 |
+
|
1059 |
+
# Option to use BERT model
|
1060 |
+
use_bert = False
|
1061 |
+
if st.session_state.bert_model is not None:
|
1062 |
+
use_bert = st.checkbox("Include sentiment analysis with BERT")
|
1063 |
+
|
1064 |
+
# Single comment prediction
|
1065 |
+
if prediction_type == "Single Comment":
|
1066 |
+
comment = st.text_area("Enter a comment to classify:")
|
1067 |
+
|
1068 |
+
if st.button("Classify Comment"):
|
1069 |
+
if comment:
|
1070 |
+
with st.spinner("Classifying comment..."):
|
1071 |
+
st.write("DEBUG: bert_model in session_state before use:", st.session_state.bert_model)
|
1072 |
+
sentiment_model = st.session_state.bert_model if use_bert and st.session_state.bert_model is not None else None
|
1073 |
+
result = moderate_comment(comment, model_to_use, sentiment_model)
|
1074 |
+
|
1075 |
+
display_classification_result(result)
|
1076 |
+
else:
|
1077 |
+
st.warning("Please enter a comment to classify.")
|
1078 |
+
|
1079 |
+
# Multiple comments prediction
|
1080 |
+
else:
|
1081 |
+
# File upload for prediction
|
1082 |
+
uploaded_file = st.file_uploader("Upload a CSV file with comments", type="csv")
|
1083 |
+
|
1084 |
+
if uploaded_file is not None:
|
1085 |
+
try:
|
1086 |
+
# Load data
|
1087 |
+
pred_data = pd.read_csv(uploaded_file)
|
1088 |
+
|
1089 |
+
# Display data
|
1090 |
+
st.subheader("Uploaded Data")
|
1091 |
+
st.write(pred_data.head())
|
1092 |
+
|
1093 |
+
# Select text column
|
1094 |
+
text_columns = [col for col in pred_data.columns if pred_data[col].dtype == 'object']
|
1095 |
+
|
1096 |
+
if text_columns:
|
1097 |
+
text_column = st.selectbox("Select text column for prediction", text_columns)
|
1098 |
+
|
1099 |
+
# Batch prediction button
|
1100 |
+
if st.button("Run Batch Prediction"):
|
1101 |
+
with st.spinner("Classifying comments..."):
|
1102 |
+
try:
|
1103 |
+
# Preprocess text
|
1104 |
+
pred_data['processed_text'] = pred_data[text_column].apply(preprocess_text)
|
1105 |
+
|
1106 |
+
# Run prediction
|
1107 |
+
sentiment_model = st.session_state.bert_model if use_bert else None
|
1108 |
+
predictions = extract_predictions(pred_data, text_column, model_to_use,
|
1109 |
+
sentiment_model)
|
1110 |
+
|
1111 |
+
# Store predictions
|
1112 |
+
st.session_state.predictions = predictions
|
1113 |
+
|
1114 |
+
# Display results
|
1115 |
+
st.subheader("Prediction Results")
|
1116 |
+
st.write(predictions.head())
|
1117 |
+
|
1118 |
+
# Summary
|
1119 |
+
st.subheader("Summary")
|
1120 |
+
toxic_count = predictions['is_toxic'].sum()
|
1121 |
+
total_count = len(predictions)
|
1122 |
+
toxic_percentage = (toxic_count / total_count) * 100
|
1123 |
+
|
1124 |
+
st.write(f"Total comments: {total_count}")
|
1125 |
+
st.write(f"Toxic comments: {toxic_count} ({toxic_percentage:.2f}%)")
|
1126 |
+
st.write(
|
1127 |
+
f"Non-toxic comments: {total_count - toxic_count} ({100 - toxic_percentage:.2f}%)")
|
1128 |
+
|
1129 |
+
# Download predictions
|
1130 |
+
if not predictions.empty:
|
1131 |
+
csv = predictions.to_csv(index=False)
|
1132 |
+
b64 = base64.b64encode(csv.encode()).decode()
|
1133 |
+
href = f'<a href="data:file/csv;base64,{b64}" download="predictions.csv">Download Predictions CSV</a>'
|
1134 |
+
st.markdown(href, unsafe_allow_html=True)
|
1135 |
+
|
1136 |
+
except Exception as e:
|
1137 |
+
st.error(f"Error during prediction: {e}")
|
1138 |
+
else:
|
1139 |
+
st.warning("No text columns found in the uploaded file.")
|
1140 |
+
|
1141 |
+
except Exception as e:
|
1142 |
+
st.error(f"Error loading data: {e}")
|
1143 |
+
st.warning("Please upload a valid CSV file.")
|
1144 |
+
else:
|
1145 |
+
st.info("Please upload a CSV file with comments for batch prediction.")
|
1146 |
+
else:
|
1147 |
+
st.info("Please train a model before making predictions.")
|
1148 |
+
|
1149 |
+
# Visualization page
|
1150 |
+
elif page == "Visualization":
|
1151 |
+
st.header("Visualization")
|
1152 |
+
|
1153 |
+
# Check if data is available
|
1154 |
+
if st.session_state.data is not None:
|
1155 |
+
# Data visualization
|
1156 |
+
st.subheader("Data Visualization")
|
1157 |
+
|
1158 |
+
# Select visualization type
|
1159 |
+
viz_type = st.selectbox(
|
1160 |
+
"Select visualization type",
|
1161 |
+
["Toxicity Distribution", "Comment Length Distribution", "Word Cloud", "Correlation Matrix"]
|
1162 |
+
)
|
1163 |
+
|
1164 |
+
# Toxicity Distribution
|
1165 |
+
if viz_type == "Toxicity Distribution":
|
1166 |
+
# Check if there are label columns
|
1167 |
+
label_columns = [col for col in st.session_state.data.columns if col in [
|
1168 |
+
"toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"
|
1169 |
+
]]
|
1170 |
+
|
1171 |
+
if label_columns:
|
1172 |
+
st.write("Toxicity Distribution:")
|
1173 |
+
|
1174 |
+
# Plot toxicity distribution
|
1175 |
+
fig = plot_toxicity_distribution(st.session_state.data, label_columns)
|
1176 |
+
st.pyplot(fig)
|
1177 |
+
else:
|
1178 |
+
st.warning("No toxicity label columns found in the dataset.")
|
1179 |
+
|
1180 |
+
# Comment Length Distribution
|
1181 |
+
elif viz_type == "Comment Length Distribution":
|
1182 |
+
# Check if there is text column
|
1183 |
+
text_columns = [col for col in st.session_state.data.columns if
|
1184 |
+
st.session_state.data[col].dtype == 'object']
|
1185 |
+
|
1186 |
+
if text_columns:
|
1187 |
+
text_column = st.selectbox("Select text column", text_columns)
|
1188 |
+
|
1189 |
+
# Calculate comment lengths
|
1190 |
+
st.session_state.data['comment_length'] = st.session_state.data[text_column].apply(
|
1191 |
+
lambda x: len(str(x)))
|
1192 |
+
|
1193 |
+
# Plot comment length distribution
|
1194 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
1195 |
+
sns.histplot(st.session_state.data['comment_length'], bins=50, kde=True, ax=ax)
|
1196 |
+
plt.xlabel('Comment Length')
|
1197 |
+
plt.ylabel('Frequency')
|
1198 |
+
plt.title('Comment Length Distribution')
|
1199 |
+
st.pyplot(fig)
|
1200 |
+
|
1201 |
+
# Statistics
|
1202 |
+
st.write("Comment Length Statistics:")
|
1203 |
+
st.write(st.session_state.data['comment_length'].describe())
|
1204 |
+
else:
|
1205 |
+
st.warning("No text columns found in the dataset.")
|
1206 |
+
|
1207 |
+
# Word Cloud
|
1208 |
+
elif viz_type == "Word Cloud":
|
1209 |
+
# Check if there is processed text
|
1210 |
+
if 'processed_text' in st.session_state.data.columns:
|
1211 |
+
try:
|
1212 |
+
from wordcloud import WordCloud
|
1213 |
+
|
1214 |
+
# Create word cloud
|
1215 |
+
st.write("Word Cloud Visualization:")
|
1216 |
+
|
1217 |
+
# Combine all processed text
|
1218 |
+
all_text = ' '.join(st.session_state.data['processed_text'].tolist())
|
1219 |
+
|
1220 |
+
# Generate word cloud
|
1221 |
+
wordcloud = WordCloud(
|
1222 |
+
width=800,
|
1223 |
+
height=400,
|
1224 |
+
background_color='white',
|
1225 |
+
max_words=200,
|
1226 |
+
contour_width=3,
|
1227 |
+
contour_color='steelblue'
|
1228 |
+
).generate(all_text)
|
1229 |
+
|
1230 |
+
# Display word cloud
|
1231 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
1232 |
+
ax.imshow(wordcloud, interpolation='bilinear')
|
1233 |
+
ax.axis('off')
|
1234 |
+
plt.tight_layout()
|
1235 |
+
st.pyplot(fig)
|
1236 |
+
|
1237 |
+
except ImportError:
|
1238 |
+
st.error("WordCloud package is not installed. Please install it to use this feature.")
|
1239 |
+
else:
|
1240 |
+
st.warning("Processed text not found. Please preprocess the data first.")
|
1241 |
+
|
1242 |
+
# Correlation Matrix
|
1243 |
+
elif viz_type == "Correlation Matrix":
|
1244 |
+
# Get numerical columns
|
1245 |
+
numerical_columns = [col for col in st.session_state.data.columns if
|
1246 |
+
st.session_state.data[col].dtype != 'object']
|
1247 |
+
|
1248 |
+
if len(numerical_columns) > 1:
|
1249 |
+
# Select columns for correlation
|
1250 |
+
selected_columns = st.multiselect(
|
1251 |
+
"Select columns for correlation matrix",
|
1252 |
+
options=numerical_columns,
|
1253 |
+
default=[col for col in numerical_columns if col in [
|
1254 |
+
"toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"
|
1255 |
+
]]
|
1256 |
+
)
|
1257 |
+
|
1258 |
+
if selected_columns and len(selected_columns) > 1:
|
1259 |
+
# Calculate correlation
|
1260 |
+
correlation = st.session_state.data[selected_columns].corr()
|
1261 |
+
|
1262 |
+
# Plot correlation matrix
|
1263 |
+
fig, ax = plt.subplots(figsize=(10, 8))
|
1264 |
+
sns.heatmap(
|
1265 |
+
correlation,
|
1266 |
+
annot=True,
|
1267 |
+
cmap='coolwarm',
|
1268 |
+
ax=ax,
|
1269 |
+
cbar=True,
|
1270 |
+
fmt='.2f',
|
1271 |
+
linewidths=0.5
|
1272 |
+
)
|
1273 |
+
plt.title('Correlation Matrix')
|
1274 |
+
st.pyplot(fig)
|
1275 |
+
else:
|
1276 |
+
st.warning("Please select at least two columns for correlation matrix.")
|
1277 |
+
else:
|
1278 |
+
st.warning("Not enough numerical columns for correlation analysis.")
|
1279 |
+
|
1280 |
+
# Add more visualization types as needed
|
1281 |
+
|
1282 |
+
# Prediction visualization
|
1283 |
+
if st.session_state.predictions is not None:
|
1284 |
+
st.subheader("Prediction Visualization")
|
1285 |
+
|
1286 |
+
# Distribution of predictions
|
1287 |
+
st.write("Distribution of Predictions:")
|
1288 |
+
|
1289 |
+
# Plot prediction distribution
|
1290 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
1291 |
+
|
1292 |
+
if 'toxicity_score' in st.session_state.predictions.columns:
|
1293 |
+
sns.histplot(st.session_state.predictions['toxicity_score'], bins=20, kde=True, ax=ax)
|
1294 |
+
plt.xlabel('Toxicity Score')
|
1295 |
+
plt.ylabel('Frequency')
|
1296 |
+
plt.title('Distribution of Toxicity Scores')
|
1297 |
+
st.pyplot(fig)
|
1298 |
+
|
1299 |
+
# Toxicity threshold analysis
|
1300 |
+
st.write("Toxicity Threshold Analysis:")
|
1301 |
+
|
1302 |
+
threshold = st.slider("Toxicity Threshold", 0.0, 1.0, 0.5, 0.05)
|
1303 |
+
|
1304 |
+
# Calculate metrics at different thresholds
|
1305 |
+
st.session_state.predictions['is_toxic_at_threshold'] = st.session_state.predictions[
|
1306 |
+
'toxicity_score'] > threshold
|
1307 |
+
|
1308 |
+
toxic_at_threshold = st.session_state.predictions['is_toxic_at_threshold'].sum()
|
1309 |
+
total_predictions = len(st.session_state.predictions)
|
1310 |
+
|
1311 |
+
st.write(f"Threshold: {threshold}")
|
1312 |
+
st.write(
|
1313 |
+
f"Toxic comments: {toxic_at_threshold} ({toxic_at_threshold / total_predictions * 100:.2f}%)")
|
1314 |
+
st.write(
|
1315 |
+
f"Non-toxic comments: {total_predictions - toxic_at_threshold} ({(total_predictions - toxic_at_threshold) / total_predictions * 100:.2f}%)")
|
1316 |
+
else:
|
1317 |
+
st.warning("Toxicity scores not found in predictions.")
|
1318 |
+
|
1319 |
+
else:
|
1320 |
+
st.info("Please upload and preprocess data for visualization.")
|
1321 |
+
|
1322 |
+
|
1323 |
+
if __name__ == "__main__":
|
1324 |
+
main()
|