Spaces:
Sleeping
Sleeping
File size: 11,294 Bytes
b605200 cd95943 b605200 cd95943 b605200 cd95943 b605200 cd95943 b605200 cd95943 b605200 cd95943 b605200 cd95943 b605200 cd95943 b605200 cd95943 b605200 cd95943 b605200 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import torch
import torch.nn.functional as F
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
# For video display:
from PIL import Image
from torchvision import transforms as tfms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, logging, AutoProcessor, CLIPVisionModel
import os, glob
from pathlib import Path
import gradio as gr
torch.manual_seed(1)
def pil_to_latent(input_im):
# Single image -> single latent in a batch (so size 1, 4, 64, 64)
with torch.no_grad():
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling
return 0.18215 * latent.latent_dist.sample()
def latents_to_pil(latents):
# bath of latents -> list of images
latents = (1 / 0.18215) * latents
with torch.no_grad():
image = vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
# Prep Scheduler
def set_timesteps(scheduler, num_inference_steps):
scheduler.set_timesteps(num_inference_steps)
scheduler.timesteps = scheduler.timesteps.to(torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925
def get_output_embeds(input_embeddings):
# CLIP's text model uses causal mask, so we prepare it here:
bsz, seq_len = input_embeddings.shape[:2]
causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
# Getting the output embeddings involves calling the model with passing output_hidden_states=True
# so that it doesn't just return the pooled final predictions:
encoder_outputs = text_encoder.text_model.encoder(
inputs_embeds=input_embeddings,
attention_mask=None, # We aren't using an attention mask so that can be None
causal_attention_mask=causal_attention_mask.to(torch_device),
output_attentions=None,
output_hidden_states=True, # We want the output embs not the final output
return_dict=None,
)
# We're interested in the output hidden state only
output = encoder_outputs[0]
# There is a final layer norm we need to pass these through
output = text_encoder.text_model.final_layer_norm(output)
# And now they're ready!
return output
# Defined a latent loss that is purely based on one image instead of multiple images
# This is used and working
# Need to look at if I can have the latents of multiple images merged together to give a thought
# Rather than a image - So that the thought is more on the design rather than pure image
def latent_loss(latent, conditioning_image):
# How far are the image embeds from lossembeds:
# image = Image.open(conditioning_image)
r_image = conditioning_image.resize((512,512))
r_latent = pil_to_latent(r_image)
error = F.mse_loss(0.5*latent,0.5*r_latent)
return error
#Generating an image with these modified embeddings
def generate_with_embs(text_input, text_embeddings, conditioning_image):
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
num_inference_steps = 30 # Number of denoising steps
guidance_scale = 7.5 # Scale for classifier-free guidance
generator = torch.manual_seed(torch.seed()) # Seed generator to create the inital latent noise
batch_size = 1
loss_scale = 100 #@param
imageCondSteps = 5
max_length = text_input.input_ids.shape[-1]
uncond_input = tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
with torch.no_grad():
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# Prep Scheduler
set_timesteps(scheduler, num_inference_steps)
# Prep latents
latents = torch.randn(
(batch_size, unet.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latents.to(torch_device)
latents = latents * scheduler.init_noise_sigma
# Loop
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
sigma = scheduler.sigmas[i]
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
with torch.no_grad():
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
#### ADDITIONAL GUIDANCE ###
if conditioning_image:
if i%imageCondSteps == 0:
# Requires grad on the latents
latents = latents.detach().requires_grad_()
# Get the predicted x0:
latents_x0 = latents - sigma * noise_pred
# Decode to image space
# denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
# Calculate loss
# loss = flag_loss(denoised_images, lossEmbeds) * blue_loss_scale
loss = latent_loss(latents_x0, conditioning_image) * loss_scale
# loss = blue_loss(denoised_images) * blue_loss_scale
print(i, 'loss item:', loss.item())
# Get gradient
cond_grad = torch.autograd.grad(loss, latents)[0]
# print("cond_grad:", cond_grad)
# Modify the latents based on this gradient
latents = latents.detach() - cond_grad * sigma**2
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, t, latents).prev_sample
return latents_to_pil(latents)[0]
def getImageWithStyle(prompt, style_name, conditioning_image):
prompt = prompt + ' in the style of puppy'
style_loc = "styles/" + style_name + '/learned_embeds.bin'
style_embed = torch.load(style_loc)
# print(style_embed)
# print(style_embed.keys(), style_embed[style_embed.keys()[0]].shape)
new_style = list(style_embed.keys())[0]
# Tokenize
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
# print("text_input:", text_input)
input_ids = text_input.input_ids.to(torch_device)
# print("Input Ids:", input_ids)
print("Input Ids shape:", input_ids.shape)
token_emb_layer = text_encoder.text_model.embeddings.token_embedding
# Get token embeddings
token_embeddings = token_emb_layer(input_ids)
print("Token Embeddings shape:", token_embeddings.shape)
# The new embedding - our special style word
replacement_token_embedding = style_embed[new_style].to(torch_device)
# Insert this into the token embeddings
token_embeddings[0, torch.where(input_ids[0]==6829)] = replacement_token_embedding.to(torch_device)
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
position_ids = text_encoder.text_model.embeddings.position_ids
print("position_ids shape:", position_ids.shape)
position_embeddings = pos_emb_layer(position_ids)
print("Position Embeddings shape:", token_embeddings.shape)
# Combine with pos embs
input_embeddings = token_embeddings + position_embeddings
# Feed through to get final output embs
modified_output_embeddings = get_output_embeds(input_embeddings)
# And generate an image with this:
image = generate_with_embs(text_input, modified_output_embeddings, conditioning_image)
return image
# name = "./Outputs/" + filename+".jpg"
# image.save(name)
# Supress some unnecessary warnings when loading the CLIPTextModel
logging.set_verbosity_error()
# Set device
torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
if "mps" == torch_device: os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1"
# Load the autoencoder model which will be used to decode the latents into image space.
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")
# Load the tokenizer and text encoder to tokenize and encode the text.
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
image_encoder = CLIPVisionModel.from_pretrained("openai/clip-vit-large-patch14")
image_processor = AutoProcessor.from_pretrained("openai/clip-vit-large-patch14")
# The UNet model for generating the latents.
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")
# The noise scheduler
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
# To the GPU we go!
vae = vae.to(torch_device)
text_encoder = text_encoder.to(torch_device)
unet = unet.to(torch_device)
image_encoder = image_encoder.to(torch_device)
# Used puppy as a placeholder here since the token is known
# Will replace with some other word that is better
# prompt = 'A farm'
# style_name = 'birb'
# conditioning_image_folder = './conditioning_images/'
# style_folder = './styles/'
# seedlist = [*range(0, 10000, 500)]
# print(seedlist)
# stylelist = ['birb', ]
# i = 0
# for style_path in glob.glob(os.path.join(style_folder, '*')):
# seed = seedlist[i]
# i = i + 1
# getImageWithStyle(prompt, style_path, None, seed)
# for conditioning_image in glob.glob(os.path.join(conditioning_image_folder, '*.jpg')):
# print("style_path:", style_path, "conditioning_image:", conditioning_image)
# getImageWithStyle(prompt, style_path, conditioning_image, seed)
def generateOutput(prompt, style_name, conditioning_image):
outputImage = getImageWithStyle(prompt, style_name, conditioning_image)
return outputImage
title = "Stable Diffusion SD Styles along with image conditioning"
description = "Shows the Stable Diffusion usage with SD Styles as well as ways to condition using different loss aspects"
examples = [["A farm", 'midjourney', 'conditioning_images/indianflag.jpg'],["A playground", 'lineart', None]]
style_options = ['birb', 'moebius', 'midjourney', 'cute-game-style', 'depthmap', 'hitokomoru', 'lineart', 'madhubani']
demo = gr.Interface(
generateOutput,
inputs = [
gr.Textbox(),
gr.Dropdown(choices=style_options, label="Choose the Style you want"),
gr.Image(width=256, height=256, label="Image to use for Conditioning", type='pil'),
],
outputs = [
gr.Image(width=256, height=256, label="Output"),
],
title = title,
description = description,
examples = examples,
cache_examples=False
)
demo.launch()
|