File size: 11,294 Bytes
b605200
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd95943
 
b605200
 
 
 
 
 
cd95943
b605200
 
 
 
cd95943
 
b605200
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd95943
b605200
 
cd95943
b605200
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd95943
 
 
b605200
cd95943
b605200
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd95943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b605200
 
cd95943
b605200
 
 
 
 
 
cd95943
b605200
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import torch
import torch.nn.functional as F

from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel

# For video display:
from PIL import Image
from torchvision import transforms as tfms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, logging, AutoProcessor, CLIPVisionModel

import os, glob
from pathlib import Path
import gradio as gr

torch.manual_seed(1)

def pil_to_latent(input_im):
    # Single image -> single latent in a batch (so size 1, 4, 64, 64)
    with torch.no_grad():
        latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling
    return 0.18215 * latent.latent_dist.sample()

def latents_to_pil(latents):
    # bath of latents -> list of images
    latents = (1 / 0.18215) * latents
    with torch.no_grad():
        image = vae.decode(latents).sample
    image = (image / 2 + 0.5).clamp(0, 1)
    image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
    images = (image * 255).round().astype("uint8")
    pil_images = [Image.fromarray(image) for image in images]
    return pil_images

# Prep Scheduler
def set_timesteps(scheduler, num_inference_steps):
    scheduler.set_timesteps(num_inference_steps)
    scheduler.timesteps = scheduler.timesteps.to(torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925

def get_output_embeds(input_embeddings):
    # CLIP's text model uses causal mask, so we prepare it here:
    bsz, seq_len = input_embeddings.shape[:2]
    causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)

    # Getting the output embeddings involves calling the model with passing output_hidden_states=True
    # so that it doesn't just return the pooled final predictions:
    encoder_outputs = text_encoder.text_model.encoder(
        inputs_embeds=input_embeddings,
        attention_mask=None, # We aren't using an attention mask so that can be None
        causal_attention_mask=causal_attention_mask.to(torch_device),
        output_attentions=None,
        output_hidden_states=True, # We want the output embs not the final output
        return_dict=None,
    )

    # We're interested in the output hidden state only
    output = encoder_outputs[0]

    # There is a final layer norm we need to pass these through
    output = text_encoder.text_model.final_layer_norm(output)

    # And now they're ready!
    return output


# Defined a latent loss that is purely based on one image instead of multiple images
# This is used and working
# Need to look at if I can have the latents of multiple images merged together to give a thought
# Rather than a image - So that the thought is more on the design rather than pure image

def latent_loss(latent, conditioning_image):
    # How far are the image embeds from lossembeds:
    # image = Image.open(conditioning_image)
    r_image = conditioning_image.resize((512,512))
    r_latent = pil_to_latent(r_image)
    error = F.mse_loss(0.5*latent,0.5*r_latent)
    return error
#Generating an image with these modified embeddings


def generate_with_embs(text_input, text_embeddings, conditioning_image):
    height = 512                        # default height of Stable Diffusion
    width = 512                         # default width of Stable Diffusion
    num_inference_steps = 30            # Number of denoising steps
    guidance_scale = 7.5                # Scale for classifier-free guidance
    
    generator = torch.manual_seed(torch.seed())   # Seed generator to create the inital latent noise
    batch_size = 1
    loss_scale = 100 #@param
    imageCondSteps = 5

    max_length = text_input.input_ids.shape[-1]
    uncond_input = tokenizer(
      [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
    )
    with torch.no_grad():
        uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
    text_embeddings = torch.cat([uncond_embeddings, text_embeddings])

    # Prep Scheduler
    set_timesteps(scheduler, num_inference_steps)

    # Prep latents
    latents = torch.randn(
    (batch_size, unet.in_channels, height // 8, width // 8),
    generator=generator,
    )
    latents = latents.to(torch_device)
    latents = latents * scheduler.init_noise_sigma

    # Loop
    for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
        # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
        latent_model_input = torch.cat([latents] * 2)
        sigma = scheduler.sigmas[i]
        latent_model_input = scheduler.scale_model_input(latent_model_input, t)

        # predict the noise residual
        with torch.no_grad():
            noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]

        # perform guidance
        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
        noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

        #### ADDITIONAL GUIDANCE ###
        if conditioning_image:
            if i%imageCondSteps == 0:
                # Requires grad on the latents
                latents = latents.detach().requires_grad_()

                # Get the predicted x0:
                latents_x0 = latents - sigma * noise_pred

                # Decode to image space
                # denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)

                # Calculate loss
                # loss = flag_loss(denoised_images, lossEmbeds) * blue_loss_scale
                loss = latent_loss(latents_x0, conditioning_image) * loss_scale
                # loss = blue_loss(denoised_images) * blue_loss_scale

                print(i, 'loss item:', loss.item())

                # Get gradient
                cond_grad = torch.autograd.grad(loss, latents)[0]
                # print("cond_grad:", cond_grad)

                # Modify the latents based on this gradient
                latents = latents.detach() - cond_grad * sigma**2

        # compute the previous noisy sample x_t -> x_t-1
        latents = scheduler.step(noise_pred, t, latents).prev_sample

    return latents_to_pil(latents)[0]


def getImageWithStyle(prompt, style_name, conditioning_image):
    prompt = prompt + ' in the style of puppy'

    style_loc = "styles/" + style_name + '/learned_embeds.bin'
    style_embed = torch.load(style_loc)
    # print(style_embed)
    # print(style_embed.keys(), style_embed[style_embed.keys()[0]].shape)
    new_style = list(style_embed.keys())[0]

    # Tokenize
    text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
    # print("text_input:", text_input)
    input_ids = text_input.input_ids.to(torch_device)
    # print("Input Ids:", input_ids)
    print("Input Ids shape:", input_ids.shape)

    token_emb_layer = text_encoder.text_model.embeddings.token_embedding
    # Get token embeddings
    token_embeddings = token_emb_layer(input_ids)
    print("Token Embeddings shape:", token_embeddings.shape)

    # The new embedding - our special style word
    replacement_token_embedding = style_embed[new_style].to(torch_device)

    # Insert this into the token embeddings
    token_embeddings[0, torch.where(input_ids[0]==6829)] = replacement_token_embedding.to(torch_device)

    pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
    position_ids = text_encoder.text_model.embeddings.position_ids
    print("position_ids shape:", position_ids.shape)
    position_embeddings = pos_emb_layer(position_ids)
    print("Position Embeddings shape:", token_embeddings.shape)

    # Combine with pos embs
    input_embeddings = token_embeddings + position_embeddings

    #  Feed through to get final output embs
    modified_output_embeddings = get_output_embeds(input_embeddings)

    # And generate an image with this:
    image = generate_with_embs(text_input, modified_output_embeddings, conditioning_image)
    return image
    # name = "./Outputs/" + filename+".jpg"
    
    # image.save(name)


# Supress some unnecessary warnings when loading the CLIPTextModel
logging.set_verbosity_error()

# Set device
torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
if "mps" == torch_device: os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1"

# Load the autoencoder model which will be used to decode the latents into image space.
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")

# Load the tokenizer and text encoder to tokenize and encode the text.
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
image_encoder = CLIPVisionModel.from_pretrained("openai/clip-vit-large-patch14")
image_processor = AutoProcessor.from_pretrained("openai/clip-vit-large-patch14")

# The UNet model for generating the latents.
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")

# The noise scheduler
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)

# To the GPU we go!
vae = vae.to(torch_device)
text_encoder = text_encoder.to(torch_device)
unet = unet.to(torch_device)
image_encoder = image_encoder.to(torch_device)

# Used puppy as a placeholder here since the token is known
# Will replace with some other word that is better
# prompt = 'A farm'
# style_name = 'birb'
# conditioning_image_folder = './conditioning_images/'
# style_folder = './styles/'

# seedlist = [*range(0, 10000, 500)]
# print(seedlist)

# stylelist = ['birb', ]

# i = 0
# for style_path in glob.glob(os.path.join(style_folder, '*')):
#     seed = seedlist[i]
#     i = i + 1
#     getImageWithStyle(prompt, style_path, None, seed)
#     for conditioning_image in glob.glob(os.path.join(conditioning_image_folder, '*.jpg')):
#         print("style_path:", style_path, "conditioning_image:", conditioning_image)
#         getImageWithStyle(prompt, style_path, conditioning_image, seed)

def generateOutput(prompt, style_name, conditioning_image):
    outputImage = getImageWithStyle(prompt, style_name, conditioning_image)
    return outputImage
    
title = "Stable Diffusion SD Styles along with image conditioning"
description = "Shows the Stable Diffusion usage with SD Styles as well as ways to condition using different loss aspects"
examples = [["A farm", 'midjourney', 'conditioning_images/indianflag.jpg'],["A playground", 'lineart', None]]
style_options = ['birb', 'moebius', 'midjourney', 'cute-game-style', 'depthmap', 'hitokomoru', 'lineart', 'madhubani']
demo = gr.Interface(
    generateOutput, 
    inputs = [
        gr.Textbox(),
        gr.Dropdown(choices=style_options, label="Choose the Style you want"),
        gr.Image(width=256, height=256, label="Image to use for Conditioning", type='pil'),
        ], 
    outputs = [
        gr.Image(width=256, height=256, label="Output"),
        ],
    title = title,
    description = description,
    examples = examples,
    cache_examples=False
)
demo.launch()