import torch import torch.nn as nn import os from peft import PeftModel from PIL import Image import gradio as gr import librosa import nltk import re from transformers import PreTrainedModel from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import CLIPProcessor, CLIPModel from transformers import WhisperProcessor, WhisperForConditionalGeneration device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_name = "microsoft/Phi-3.5-mini-instruct" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) # Load the model and processor clipmodel = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") clipprocessor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") nltk.download('punkt') nltk.download('punkt_tab') def remove_punctuation(text): newtext = ''.join([char for char in text if char.isalnum() or char.isspace()]) newtext = ' '.join(newtext.split()) return newtext def preprocess_text(text): text_no_punct = remove_punctuation(text) return text_no_punct # Load Whisper model and processor whisper_model_name = "openai/whisper-small" whisper_processor = WhisperProcessor.from_pretrained(whisper_model_name) whisper_model = WhisperForConditionalGeneration.from_pretrained(whisper_model_name) def transcribe_speech(audiopath): # Load and preprocess the audio speech, rate = librosa.load(audiopath, sr=16000) audio_input = whisper_processor(speech, return_tensors="pt", sampling_rate=16000) # print("audio_input:", audio_input) # Generate transcription with torch.no_grad(): generated_ids = whisper_model.generate(audio_input["input_features"]) # Decode the transcription transcription = whisper_processor.batch_decode(generated_ids, skip_special_tokens=True)[0] return transcription class ProjectionBlock(nn.Module): def __init__(self, input_dim_CLIP, input_dim_phi2): super().__init__() self.pre_norm = nn.LayerNorm(input_dim_CLIP) self.proj = nn.Sequential( nn.Linear(input_dim_CLIP, input_dim_phi2), nn.GELU(), nn.Linear(input_dim_phi2, input_dim_phi2) ) def forward(self, x): x = self.pre_norm(x) return self.proj(x) # Modify the MultimodalPhiModel class to work with HuggingFace Trainer class MultimodalPhiModel(PreTrainedModel): def gradient_checkpointing_enable(self, **kwargs): self.phi_model.gradient_checkpointing_enable(**kwargs) def gradient_checkpointing_disable(self): self.phi_model.gradient_checkpointing_disable() def __init__(self, phi_model, tokenizer, projection): super().__init__(phi_model.config) self.phi_model = phi_model self.image_projection = projection self.tokenizer = tokenizer # self.device = device self.base_phi_model = None @classmethod def from_pretrained(self, pretrained_model_name_or_path, *model_args, debug=False, **kwargs): model_name = "microsoft/Phi-3.5-mini-instruct" base_phi_model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, trust_remote_code=True, ) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) # phi_path = os.path.join(pretrained_model_name_or_path, "phi_model") phi_path = pretrained_model_name_or_path # Save the base model model = PeftModel.from_pretrained(base_phi_model, phi_path) phi_model = model.merge_and_unload() # # Load the base Phi-3 model # phi_model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) input_dim = 512 output_dim = 3072 # Load the projector weights # projector_path = os.path.join(pretrained_model_name_or_path, "projection_layer", "pytorch_model.bin") projector_path = os.path.join(pretrained_model_name_or_path, "image_projector.pth") if os.path.exists(projector_path): projector_state_dict = torch.load(projector_path, map_location=phi_model.device) projector = ProjectionBlock(input_dim, output_dim) # Try to load the state dict, ignoring mismatched keys projector.load_state_dict(projector_state_dict, strict=False) print(f"Loaded projector with input_dim={input_dim}, output_dim={output_dim}") else: print(f"Projector weights not found at {projector_path}. Initializing with default dimensions.") input_dim = 512 # Default CLIP embedding size output_dim = phi_model.config.hidden_size projector = ProjectionBlock(input_dim, output_dim) # Create and return the Phi3WithProjector instance model = self(phi_model, tokenizer, projector) model.base_phi_model = base_phi_model return model def save_pretrained(self, save_directory): # Load the Phi-3.5 model self.phi_model.save_pretrained(save_directory) # model_name = "microsoft/Phi-3.5-mini-instruct" # base_phi_model = AutoModelForCausalLM.from_pretrained( # model_name, # torch_dtype=torch.bfloat16, # trust_remote_code=True, # ) # # Save the base model # model = PeftModel.from_pretrained(base_phi_model, self.phi_model) # model = model.merge_and_unload() # model.save_pretrained(save_directory) # Save the projector weights projector_path = os.path.join(save_directory, "image_projector.pth") torch.save(self.image_projection.state_dict(), projector_path) # Save the config self.config.save_pretrained(save_directory) def encode(self, image_features): image_projections = self.image_projection(image_features) return image_projections def forward(self, start_input_ids, end_input_ids, image_features, attention_mask, labels): # print("tokenizer bos_token_id", self.tokenizer.bos_token_id, "tokenizer eos_token", self.tokenizer.eos_token, # "tokenizer pad_token_id", self.tokenizer.pad_token_id, "tokenizer sep_token_id", self.tokenizer.sep_token_id, # "tokenizer cls_token_id", self.tokenizer.cls_token_id, "tokenizer mask_token_id", self.tokenizer.mask_token_id, # "tokenizer unk_token_id", self.tokenizer.unk_token_id) device = next(self.parameters()).device start_embeds = self.phi_model.get_input_embeddings()(start_input_ids.to(device)) end_embeds = self.phi_model.get_input_embeddings()(end_input_ids.to(device)) # print("start_embeds shape:", start_embeds.shape, "image_embeddings shape:", image_embeddings.shape, "end_embeds shape:", end_embeds.shape) # print("start_embeds dtype:", start_embeds.dtype, "image_embeddings dtype:", image_embeddings.dtype, "end_embeds dtype:", end_embeds.dtype) if image_features is not None: # Encode image features image_embeddings = self.encode(image_features.to(device)).bfloat16() input_embeds = torch.cat([start_embeds, image_embeddings, end_embeds], dim=1) else: input_embeds = torch.cat([start_embeds, end_embeds], dim=1) # print("Input Embeds shape:", input_embeds.shape, "attention_mask shape:", attention_mask.shape, "labels shape:", labels.shape) # print("input_embeds dtype:", input_embeds.dtype, "attention_mask dtype:", attention_mask.dtype) # Forward pass through the language model outputs = self.phi_model(inputs_embeds=input_embeds.to(device), attention_mask=attention_mask.to(device), labels=labels, return_dict=True) return outputs def getImageArray(image_path): image = Image.open(image_path) return image def getAudioArray(audio_path): speech, rate = librosa.load(audio_path, sr=16000) return speech # Start text before putting image embedding start_text = "<|system|> \n You are an assistant good at understanding the context.<|end|> \n <|user|> \n" # Prepare text input for causal language modeling end_text = "\n Describe the objects and their relationship in the given context.<|end|> \n <|assistant|> \n" words = nltk.word_tokenize(start_text) + nltk.word_tokenize(end_text) input_words = list(set(words)) # print("Input words:",input_words) def getInputs(image_path, question, answer=""): image_features = None num_image_tokens = 0 if image_path is not None: # print("type of image:", type(image_path)) # print("image path:", image_path) image = clipprocessor(images=Image.open(image_path), return_tensors="pt") # Generate the embedding image_features = clipmodel.get_image_features(**image) # Generate the embedding # image_features = get_clip_embeddings(image) image_features = torch.stack([image_features]) num_image_tokens = image_features.shape[1] # Start text before putting image embedding start_text = f"<|system|>\nYou are an assistant good at understanding the context.<|end|>\n<|user|>\n " # Prepare text input for causal language modeling end_text = f" .\n Describe the objects and their relationship from the context. <|end|>\n<|assistant|>\n {answer}" # Tokenize the full texts start_tokens = tokenizer(start_text, padding=True, truncation=True, max_length=512, return_tensors="pt") end_tokens = tokenizer(end_text, padding=True, truncation=True, max_length=512, return_tensors="pt") # print(f"start_encodings shape: {start_encodings['input_ids'].shape}, end_encodings shape: {end_encodings['input_ids'].shape}") start_input_ids = start_tokens['input_ids'] start_attention_mask = start_tokens['attention_mask'] end_input_ids = end_tokens['input_ids'] end_attention_mask = end_tokens['attention_mask'] # print("start_input_ids type:", type(start_input_ids), "image_tokens type:", type(image_tokens)) # print(f"start_input_ids shape: {start_input_ids.shape}, image_tokens shape: {image_tokens.shape}, end_input_ids shape: {end_input_ids.shape}") # input_ids = torch.cat([start_input_ids,image_tokens,end_input_ids], dim=1) if image_path is not None: attention_mask = torch.cat([start_attention_mask, torch.ones((1, num_image_tokens), dtype=torch.long), end_attention_mask], dim=1) else: attention_mask = torch.cat([start_attention_mask, end_attention_mask], dim=1) return start_input_ids, end_input_ids, image_features, attention_mask model_location = "./MM_FT_C1_V2" # print("Model location:", model_location) model = MultimodalPhiModel.from_pretrained(model_location).to(device) model_name = "microsoft/Phi-3.5-mini-instruct" base_phi_model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, trust_remote_code=True, ).to(device) def getStringAfter(output, start_str): if start_str in output: answer = output.split(start_str)[1] else: answer = output answer = preprocess_text(answer) return answer def getAnswerPart(output): output_words = nltk.word_tokenize(output) filtered_words = [word for word in output_words if word.lower() not in [w.lower() for w in input_words]] return ' '.join(filtered_words) def generateOutput(image_path, audio_path, context_text, question, max_length=3): answerPart = "" speech_text = "" if image_path is not None: for i in range(max_length): start_tokens, end_tokens, image_features, attention_mask = getInputs(image_path, question, answer=answerPart) # print("image_features dtype:", image_features.dtype) output = model(start_tokens, end_tokens, image_features, attention_mask, labels=None) tokens = output.logits.argmax(dim=-1) output = tokenizer.decode( tokens[0], skip_special_tokens=True ) # answerPart = getStringAfter(output, "<|assistant|>") answerPart = getAnswerPart(output) print("Answerpart:", answerPart) if audio_path is not None: speech_text = transcribe_speech(audio_path) print("Speech Text:", speech_text) if (question is None) or (question == ""): question = " Describe the objects and their relationships in 1 sentence." input_text = ( "<|system|>\n Please understand the context " "and answer the question in 1 or 2 summarized sentences.\n" f"<|end|>\n<|user|>\n<|context|> {answerPart} \n {speech_text} \n {context_text} " f"\n<|question|>: {question} \n<|end|>\n<|assistant|>\n" ) print("input_text:", input_text) tokens = tokenizer(input_text, padding=True, truncation=True, max_length=1024, return_tensors="pt") start_tokens = tokens['input_ids'].to(device) # start_tokens = tokenizer(input_text, padding=True, truncation=True, max_length=1024, return_tensors="pt")['input_ids'].to(device) attention_mask = tokens['attention_mask'].to(device) # base_phi_model.generate(start_tokens, max_length=2, do_sample=False, pad_token_id=tokenizer.pad_token_id) output_text = tokenizer.decode( base_phi_model.generate(start_tokens, attention_mask=attention_mask, max_length=1024, do_sample=False, pad_token_id=tokenizer.pad_token_id)[0], skip_special_tokens=True ) output_text = getStringAfter(output_text, question).strip() return output_text title = "Created Fine Tuned MultiModal model" description = "Test the fine tuned multimodal model created using clip, phi3.5 mini instruct, whisper models" demo = gr.Blocks() def process_inputs(image, audio_source, audio_file, audio_mic, context_text, question): if audio_source == "Microphone": speech = audio_mic elif audio_source == "Audio File": speech = audio_file else: speech = None # image_features = get_clip_embeddings(image) if image else None answer = generateOutput(image, speech, context_text, question) return answer with demo: gr.Markdown(f"# {title}") gr.Markdown(f" {description}") with gr.Row(): with gr.Column(scale=1, min_width=300): image_input = gr.Image(type="filepath", label="Upload Image") with gr.Column(scale=2, min_width=300): question = gr.Textbox(label="Question") with gr.Row(): audio_source = gr.Radio(choices=["Microphone", "Audio File"], label="Select Audio Source") audio_file = gr.Audio(sources="upload", type="filepath", visible=False) audio_mic = gr.Audio(sources="microphone", type="filepath", visible=False) context_text = gr.Textbox(label="Context Text") output_text = gr.Textbox(label="Output") def update_audio_input(source): if source == "Microphone": return gr.update(visible=True), gr.update(visible=False) elif source == "Audio File": return gr.update(visible=False), gr.update(visible=True) else: return gr.update(visible=False), gr.update(visible=False) audio_source.change(fn=update_audio_input, inputs=audio_source, outputs=[audio_mic, audio_file]) submit_button = gr.Button("Submit") submit_button.click(fn=process_inputs, inputs=[image_input, audio_source, audio_file, audio_mic, context_text, question], outputs=output_text) demo.launch(debug=True)