File size: 1,901 Bytes
27d2338
 
 
 
 
0893248
27d2338
 
 
 
 
 
 
 
 
 
 
 
3d31657
38b3ee8
27d2338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18dbf41
27d2338
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import os
import clip
import torch
from torchvision.datasets import CIFAR100
from PIL import Image
import gradio as gr

# Load the model
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load('ViT-B/32', device)

# Download the dataset
cifar100 = CIFAR100(root=os.path.expanduser("~/.cache"), download=True, train=False)
text_inputs = torch.cat([clip.tokenize(f"a photo of a {c}") for c in cifar100.classes]).to(device)

def generateOutput(source):
    # Prepare the inputs
    # image, class_id = cifar100[3637]
    image = Image.fromarray(source.astype('uint8'), 'RGB')
    image_input = preprocess(image).unsqueeze(0).to(device)

    with torch.no_grad():
        image_features = model.encode_image(image_input)
        text_features = model.encode_text(text_inputs)
    
    # Pick the top 5 most similar labels for the image
    image_features /= image_features.norm(dim=-1, keepdim=True)
    text_features /= text_features.norm(dim=-1, keepdim=True)
    similarity = (100.0 * image_features @ text_features.T).softmax(dim=-1)
    values, indices = similarity[0].topk(5)
    
    # Result in Text
    outputText = "\nTop predictions:\n"
    for value, index in zip(values, indices):
        outputText = outputText + f"{cifar100.classes[index]:>16s}: {100 * value.item():.2f}% \n"
    
    return(outputText)

title = "CLIP Classification Inference Trials"
description = "Shows the CLIP Classification based on CIFAR100 data with your own image"
examples = [["Elephants.jpg"],["bloom-blooming-blossom-462118.jpg"], ["Puppies.jpg"], ["photo2.JPG"], ["MultipleItems.jpg"]]
demo = gr.Interface(
    generateOutput, 
    inputs = [
        gr.Image(width=256, height=256, label="Input Image"), 
        ], 
    outputs = [
        gr.Text(),
        ],
    title = title,
    description = description,
    examples = examples,
    cache_examples=False
)
demo.launch()