|
import torch |
|
from torch.utils.data import DataLoader, Dataset |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments |
|
import pandas as pd |
|
|
|
class CustomDataset(Dataset): |
|
def __init__(self, data, tokenizer, max_len): |
|
self.data = data |
|
self.tokenizer = tokenizer |
|
self.max_len = max_len |
|
|
|
def __len__(self): |
|
return len(self.data) |
|
|
|
def __getitem__(self, index): |
|
row = self.data.iloc[index] |
|
inputs = self.tokenizer.encode_plus( |
|
row['text'], |
|
add_special_tokens=True, |
|
max_length=self.max_len, |
|
padding='max_length', |
|
return_attention_mask=True, |
|
return_tensors='pt' |
|
) |
|
return { |
|
'input_ids': inputs['input_ids'].flatten(), |
|
'attention_mask': inputs['attention_mask'].flatten(), |
|
'labels': torch.tensor(row['label'], dtype=torch.long) |
|
} |
|
|
|
def train_model(model_name, train_data_path, output_dir, epochs=3, batch_size=16, max_len=128): |
|
|
|
df = pd.read_csv(train_data_path) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
dataset = CustomDataset(df, tokenizer, max_len) |
|
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) |
|
|
|
|
|
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(df['label'].unique())) |
|
|
|
|
|
training_args = TrainingArguments( |
|
output_dir=output_dir, |
|
num_train_epochs=epochs, |
|
per_device_train_batch_size=batch_size, |
|
evaluation_strategy="epoch", |
|
save_total_limit=2, |
|
save_steps=10_000, |
|
logging_dir=f'{output_dir}/logs', |
|
) |
|
|
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=dataset, |
|
) |
|
|
|
|
|
trainer.train() |
|
|
|
|
|
model.save_pretrained(output_dir) |
|
tokenizer.save_pretrained(output_dir) |
|
|
|
if __name__ == "__main__": |
|
model_name = "bert-base-uncased" |
|
train_data_path = "data/example_dataset.csv" |
|
output_dir = "output" |
|
train_model(model_name, train_data_path, output_dir) |