re
Browse files
app.py
CHANGED
@@ -1,29 +1,30 @@
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
-
import
|
|
|
5 |
from ultralytics import YOLO
|
6 |
|
7 |
# Load the Latex2Layout model
|
8 |
model_path = "latex2layout_object_detection_yolov8.pt"
|
9 |
-
|
10 |
|
11 |
-
def
|
12 |
"""
|
13 |
-
Perform layout detection on the uploaded image using the Latex2Layout model.
|
14 |
|
15 |
Args:
|
16 |
-
image: The uploaded image
|
17 |
|
18 |
Returns:
|
19 |
-
annotated_image: Image with detection boxes
|
20 |
-
|
21 |
"""
|
22 |
if image is None:
|
23 |
return None, "Error: No image uploaded."
|
24 |
|
25 |
-
# Run detection
|
26 |
-
results =
|
27 |
result = results[0]
|
28 |
|
29 |
# Create a copy of the image for visualization
|
@@ -33,108 +34,74 @@ def detect_layout(image):
|
|
33 |
# Get image dimensions
|
34 |
img_height, img_width = image.shape[:2]
|
35 |
|
36 |
-
#
|
37 |
for box in result.boxes:
|
38 |
x1, y1, x2, y2 = map(int, box.xyxy[0].cpu().numpy())
|
39 |
conf = float(box.conf[0])
|
40 |
cls_id = int(box.cls[0])
|
41 |
cls_name = result.names[cls_id]
|
42 |
|
43 |
-
#
|
44 |
color = tuple(np.random.randint(0, 255, 3).tolist())
|
|
|
|
|
45 |
cv2.rectangle(annotated_image, (x1, y1), (x2, y2), color, 2)
|
46 |
label = f'{cls_name} {conf:.2f}'
|
47 |
(label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
48 |
cv2.rectangle(annotated_image, (x1, y1-label_height-5), (x1+label_width, y1), color, -1)
|
49 |
cv2.putText(annotated_image, label, (x1, y1-5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
50 |
|
51 |
-
#
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
def call_qwen_vl_api(api_url, image, layout_info, question):
|
58 |
-
"""
|
59 |
-
Call the Qwen2.5-VL API with the image, layout info, and user question.
|
60 |
-
|
61 |
-
Args:
|
62 |
-
api_url: The URL of the Qwen2.5-VL API
|
63 |
-
image: The uploaded image (numpy array)
|
64 |
-
layout_info: Text description of detected layout elements
|
65 |
-
question: User's question about the image and layout
|
66 |
-
|
67 |
-
Returns:
|
68 |
-
answer: Response from the Qwen2.5-VL API
|
69 |
-
"""
|
70 |
-
if not api_url:
|
71 |
-
return "Error: Please provide a valid Qwen2.5-VL API URL."
|
72 |
-
if not question:
|
73 |
-
return "Error: Please enter a question."
|
74 |
|
75 |
-
|
76 |
-
# Convert image to a format suitable for API (e.g., base64 or raw bytes might be needed; adjust per API spec)
|
77 |
-
# Here, we assume the API accepts a URL or raw data; for simplicity, we use a placeholder
|
78 |
-
payload = {
|
79 |
-
"image": image.tolist(), # Adjust this based on API requirements (e.g., base64 encoding)
|
80 |
-
"prompt": f"{layout_info}\n\nQuestion: {question}",
|
81 |
-
}
|
82 |
-
response = requests.post(api_url, json=payload, timeout=30)
|
83 |
-
response.raise_for_status() # Raise an error for bad status codes
|
84 |
-
return response.json().get("answer", "Error: No answer received from API.")
|
85 |
-
except requests.exceptions.RequestException as e:
|
86 |
-
return f"Error: API call failed - {str(e)}"
|
87 |
|
88 |
-
def
|
89 |
"""
|
90 |
-
|
91 |
|
92 |
Args:
|
93 |
-
|
94 |
-
image: Uploaded image
|
95 |
-
question: User's question
|
96 |
|
97 |
Returns:
|
98 |
-
|
99 |
-
layout_info: Detected layout description
|
100 |
-
answer: API response to the question
|
101 |
"""
|
102 |
-
|
103 |
-
|
104 |
-
return None, layout_info, "Error: Detection failed."
|
105 |
|
106 |
-
|
107 |
-
|
|
|
|
|
108 |
|
109 |
# Custom CSS for styling
|
110 |
custom_css = """
|
111 |
.container { max-width: 1200px; margin: auto; }
|
112 |
.button-primary { background-color: #4CAF50; color: white; }
|
|
|
113 |
.gr-image { border: 2px solid #ddd; border-radius: 5px; }
|
114 |
.gr-textbox { font-family: monospace; }
|
115 |
"""
|
116 |
|
117 |
-
# Create Gradio interface
|
118 |
with gr.Blocks(
|
119 |
-
title="Latex2Layout Detection
|
120 |
theme=gr.themes.Default(),
|
121 |
css=custom_css
|
122 |
) as demo:
|
|
|
123 |
gr.Markdown(
|
124 |
"""
|
125 |
-
# Latex2Layout Layout Detection
|
126 |
-
Upload an image to detect layout elements using the **Latex2Layout** model
|
127 |
"""
|
128 |
)
|
129 |
|
130 |
-
#
|
131 |
-
api_url_input = gr.Textbox(
|
132 |
-
label="Qwen2.5-VL API URL",
|
133 |
-
placeholder="Enter the Qwen2.5-VL API URL here",
|
134 |
-
value=""
|
135 |
-
)
|
136 |
-
|
137 |
-
# Main layout
|
138 |
with gr.Row():
|
139 |
# Input column
|
140 |
with gr.Column(scale=1):
|
@@ -144,49 +111,60 @@ with gr.Blocks(
|
|
144 |
height=400,
|
145 |
elem_classes="gr-image"
|
146 |
)
|
147 |
-
|
148 |
-
|
149 |
-
placeholder="e.g., What is the layout structure of this image?",
|
150 |
-
lines=2
|
151 |
-
)
|
152 |
-
submit_btn = gr.Button(
|
153 |
-
"Detect & Ask",
|
154 |
variant="primary",
|
155 |
elem_classes="button-primary"
|
156 |
)
|
157 |
-
gr.Markdown("**Tip**:
|
158 |
|
159 |
# Output column
|
160 |
with gr.Column(scale=1):
|
161 |
output_image = gr.Image(
|
162 |
-
label="
|
163 |
height=400,
|
164 |
elem_classes="gr-image"
|
165 |
)
|
166 |
-
|
167 |
-
label="Layout
|
168 |
-
lines=
|
169 |
-
max_lines=
|
170 |
elem_classes="gr-textbox"
|
171 |
)
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
elem_classes="gr-textbox"
|
177 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
-
# Event
|
180 |
-
|
181 |
-
fn=
|
182 |
-
inputs=
|
183 |
-
outputs=[output_image,
|
184 |
_js="() => { document.querySelector('.button-primary').innerText = 'Processing...'; }",
|
185 |
show_progress=True
|
186 |
).then(
|
187 |
-
fn=lambda: gr.update(value="
|
188 |
-
outputs=
|
189 |
-
_js="() => { document.querySelector('.button-primary').innerText = '
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
)
|
191 |
|
192 |
# Launch the application
|
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
+
import os
|
5 |
+
import tempfile
|
6 |
from ultralytics import YOLO
|
7 |
|
8 |
# Load the Latex2Layout model
|
9 |
model_path = "latex2layout_object_detection_yolov8.pt"
|
10 |
+
model = YOLO(model_path)
|
11 |
|
12 |
+
def detect_and_visualize(image):
|
13 |
"""
|
14 |
+
Perform layout detection on the uploaded image using the Latex2Layout model and visualize the results.
|
15 |
|
16 |
Args:
|
17 |
+
image: The uploaded image
|
18 |
|
19 |
Returns:
|
20 |
+
annotated_image: Image with detection boxes
|
21 |
+
layout_annotations: Annotations in YOLO format
|
22 |
"""
|
23 |
if image is None:
|
24 |
return None, "Error: No image uploaded."
|
25 |
|
26 |
+
# Run detection using the Latex2Layout model
|
27 |
+
results = model(image)
|
28 |
result = results[0]
|
29 |
|
30 |
# Create a copy of the image for visualization
|
|
|
34 |
# Get image dimensions
|
35 |
img_height, img_width = image.shape[:2]
|
36 |
|
37 |
+
# Draw detection results
|
38 |
for box in result.boxes:
|
39 |
x1, y1, x2, y2 = map(int, box.xyxy[0].cpu().numpy())
|
40 |
conf = float(box.conf[0])
|
41 |
cls_id = int(box.cls[0])
|
42 |
cls_name = result.names[cls_id]
|
43 |
|
44 |
+
# Generate a color for each class
|
45 |
color = tuple(np.random.randint(0, 255, 3).tolist())
|
46 |
+
|
47 |
+
# Draw bounding box and label
|
48 |
cv2.rectangle(annotated_image, (x1, y1), (x2, y2), color, 2)
|
49 |
label = f'{cls_name} {conf:.2f}'
|
50 |
(label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
51 |
cv2.rectangle(annotated_image, (x1, y1-label_height-5), (x1+label_width, y1), color, -1)
|
52 |
cv2.putText(annotated_image, label, (x1, y1-5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
53 |
|
54 |
+
# Convert to YOLO format (normalized)
|
55 |
+
x_center = (x1 + x2) / (2 * img_width)
|
56 |
+
y_center = (y1 + y2) / (2 * img_height)
|
57 |
+
width = (x2 - x1) / img_width
|
58 |
+
height = (y2 - y1) / img_height
|
59 |
+
layout_annotations.append(f"{cls_id} {x_center:.6f} {y_center:.6f} {width:.6f} {height:.6f}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
+
return annotated_image, "\n".join(layout_annotations)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
def save_layout_annotations(layout_annotations_str):
|
64 |
"""
|
65 |
+
Save layout annotations to a temporary file and return the file path.
|
66 |
|
67 |
Args:
|
68 |
+
layout_annotations_str: Annotations string in YOLO format
|
|
|
|
|
69 |
|
70 |
Returns:
|
71 |
+
file_path: Path to the saved annotation file
|
|
|
|
|
72 |
"""
|
73 |
+
if not layout_annotations_str:
|
74 |
+
return None
|
|
|
75 |
|
76 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".txt")
|
77 |
+
with open(temp_file.name, "w") as f:
|
78 |
+
f.write(layout_annotations_str)
|
79 |
+
return temp_file.name
|
80 |
|
81 |
# Custom CSS for styling
|
82 |
custom_css = """
|
83 |
.container { max-width: 1200px; margin: auto; }
|
84 |
.button-primary { background-color: #4CAF50; color: white; }
|
85 |
+
.button-secondary { background-color: #008CBA; color: white; }
|
86 |
.gr-image { border: 2px solid #ddd; border-radius: 5px; }
|
87 |
.gr-textbox { font-family: monospace; }
|
88 |
"""
|
89 |
|
90 |
+
# Create Gradio interface with enhanced styling
|
91 |
with gr.Blocks(
|
92 |
+
title="Latex2Layout Detection",
|
93 |
theme=gr.themes.Default(),
|
94 |
css=custom_css
|
95 |
) as demo:
|
96 |
+
# Header with instructions
|
97 |
gr.Markdown(
|
98 |
"""
|
99 |
+
# Latex2Layout Layout Detection
|
100 |
+
Upload an image to detect layout elements using the **Latex2Layout** model. View the annotated image and download the results in YOLO format.
|
101 |
"""
|
102 |
)
|
103 |
|
104 |
+
# Main layout with two columns
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
with gr.Row():
|
106 |
# Input column
|
107 |
with gr.Column(scale=1):
|
|
|
111 |
height=400,
|
112 |
elem_classes="gr-image"
|
113 |
)
|
114 |
+
detect_btn = gr.Button(
|
115 |
+
"Start Detection",
|
|
|
|
|
|
|
|
|
|
|
116 |
variant="primary",
|
117 |
elem_classes="button-primary"
|
118 |
)
|
119 |
+
gr.Markdown("**Tip**: Upload a clear image for optimal detection results.")
|
120 |
|
121 |
# Output column
|
122 |
with gr.Column(scale=1):
|
123 |
output_image = gr.Image(
|
124 |
+
label="Detection Results",
|
125 |
height=400,
|
126 |
elem_classes="gr-image"
|
127 |
)
|
128 |
+
layout_annotations = gr.Textbox(
|
129 |
+
label="Layout Annotations (YOLO Format)",
|
130 |
+
lines=10,
|
131 |
+
max_lines=15,
|
132 |
elem_classes="gr-textbox"
|
133 |
)
|
134 |
+
download_btn = gr.Button(
|
135 |
+
"Download Annotations",
|
136 |
+
variant="secondary",
|
137 |
+
elem_classes="button-secondary"
|
|
|
138 |
)
|
139 |
+
download_file = gr.File(
|
140 |
+
label="Download File",
|
141 |
+
interactive=False
|
142 |
+
)
|
143 |
+
|
144 |
+
# Example image button (optional)
|
145 |
+
with gr.Row():
|
146 |
+
gr.Button("Load Example Image").click(
|
147 |
+
fn=lambda: cv2.imread("example_image.jpg"),
|
148 |
+
outputs=input_image
|
149 |
+
)
|
150 |
|
151 |
+
# Event handlers
|
152 |
+
detect_btn.click(
|
153 |
+
fn=detect_and_visualize,
|
154 |
+
inputs=input_image,
|
155 |
+
outputs=[output_image, layout_annotations],
|
156 |
_js="() => { document.querySelector('.button-primary').innerText = 'Processing...'; }",
|
157 |
show_progress=True
|
158 |
).then(
|
159 |
+
fn=lambda: gr.update(value="Start Detection"),
|
160 |
+
outputs=detect_btn,
|
161 |
+
_js="() => { document.querySelector('.button-primary').innerText = 'Start Detection'; }"
|
162 |
+
)
|
163 |
+
|
164 |
+
download_btn.click(
|
165 |
+
fn=save_layout_annotations,
|
166 |
+
inputs=layout_annotations,
|
167 |
+
outputs=download_file
|
168 |
)
|
169 |
|
170 |
# Launch the application
|