Hanf Chase
commited on
Commit
·
88158ba
1
Parent(s):
71e7eab
v1
Browse files- app.py +111 -72
- test_yolo.py +0 -58
app.py
CHANGED
@@ -5,130 +5,169 @@ import os
|
|
5 |
import tempfile
|
6 |
from ultralytics import YOLO
|
7 |
|
8 |
-
#
|
9 |
-
model_path = "
|
10 |
model = YOLO(model_path)
|
11 |
|
12 |
def detect_and_visualize(image):
|
13 |
"""
|
14 |
-
|
15 |
|
16 |
Args:
|
17 |
-
image:
|
18 |
|
19 |
Returns:
|
20 |
-
annotated_image:
|
21 |
-
|
22 |
"""
|
23 |
-
|
24 |
-
|
25 |
|
26 |
-
#
|
|
|
27 |
result = results[0]
|
28 |
|
29 |
-
#
|
30 |
annotated_image = image.copy()
|
|
|
31 |
|
32 |
-
#
|
33 |
-
yolo_annotations = []
|
34 |
-
|
35 |
-
# 获取图像尺寸
|
36 |
img_height, img_width = image.shape[:2]
|
37 |
|
38 |
-
#
|
39 |
for box in result.boxes:
|
40 |
-
|
41 |
-
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
|
42 |
-
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
|
43 |
-
|
44 |
-
# 获取置信度
|
45 |
conf = float(box.conf[0])
|
46 |
-
|
47 |
-
# 获取类别ID和名称
|
48 |
cls_id = int(box.cls[0])
|
49 |
cls_name = result.names[cls_id]
|
50 |
|
51 |
-
#
|
52 |
color = tuple(np.random.randint(0, 255, 3).tolist())
|
53 |
|
54 |
-
#
|
55 |
cv2.rectangle(annotated_image, (x1, y1), (x2, y2), color, 2)
|
56 |
-
|
57 |
-
# 准备标签文本
|
58 |
label = f'{cls_name} {conf:.2f}'
|
59 |
-
|
60 |
-
# 计算标签大小
|
61 |
(label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
62 |
-
|
63 |
-
# 绘制标签背景
|
64 |
cv2.rectangle(annotated_image, (x1, y1-label_height-5), (x1+label_width, y1), color, -1)
|
65 |
-
|
66 |
-
# 绘制标签文本
|
67 |
cv2.putText(annotated_image, label, (x1, y1-5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
68 |
|
69 |
-
#
|
70 |
x_center = (x1 + x2) / (2 * img_width)
|
71 |
y_center = (y1 + y2) / (2 * img_height)
|
72 |
width = (x2 - x1) / img_width
|
73 |
height = (y2 - y1) / img_height
|
74 |
-
|
75 |
-
# 添加到YOLO标注列表
|
76 |
-
yolo_annotations.append(f"{cls_id} {x_center:.6f} {y_center:.6f} {width:.6f} {height:.6f}")
|
77 |
|
78 |
-
|
79 |
-
yolo_annotations_str = "\n".join(yolo_annotations)
|
80 |
-
|
81 |
-
return annotated_image, yolo_annotations_str
|
82 |
|
83 |
-
def
|
84 |
"""
|
85 |
-
|
86 |
|
87 |
Args:
|
88 |
-
|
89 |
|
90 |
Returns:
|
91 |
-
file_path:
|
92 |
"""
|
93 |
-
|
94 |
-
|
95 |
-
temp_file_path = temp_file.name
|
96 |
-
|
97 |
-
# 写入标注内容
|
98 |
-
with open(temp_file_path, "w") as f:
|
99 |
-
f.write(yolo_annotations_str)
|
100 |
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
-
#
|
104 |
-
with gr.Blocks(
|
105 |
-
|
106 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
|
|
108 |
with gr.Row():
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
-
#
|
120 |
detect_btn.click(
|
121 |
fn=detect_and_visualize,
|
122 |
-
inputs=
|
123 |
-
outputs=[output_image,
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
)
|
125 |
|
126 |
download_btn.click(
|
127 |
-
fn=
|
128 |
-
inputs=
|
129 |
-
outputs=
|
130 |
)
|
131 |
|
132 |
-
|
|
|
133 |
if __name__ == "__main__":
|
134 |
-
demo.launch()
|
|
|
5 |
import tempfile
|
6 |
from ultralytics import YOLO
|
7 |
|
8 |
+
# Load the Latex2Layout model
|
9 |
+
model_path = "latex2layout_object_detection_yolov8.pt"
|
10 |
model = YOLO(model_path)
|
11 |
|
12 |
def detect_and_visualize(image):
|
13 |
"""
|
14 |
+
Perform layout detection on the uploaded image using the Latex2Layout model and visualize the results.
|
15 |
|
16 |
Args:
|
17 |
+
image: The uploaded image
|
18 |
|
19 |
Returns:
|
20 |
+
annotated_image: Image with detection boxes
|
21 |
+
layout_annotations: Annotations in YOLO format
|
22 |
"""
|
23 |
+
if image is None:
|
24 |
+
return None, "Error: No image uploaded."
|
25 |
|
26 |
+
# Run detection using the Latex2Layout model
|
27 |
+
results = model(image)
|
28 |
result = results[0]
|
29 |
|
30 |
+
# Create a copy of the image for visualization
|
31 |
annotated_image = image.copy()
|
32 |
+
layout_annotations = []
|
33 |
|
34 |
+
# Get image dimensions
|
|
|
|
|
|
|
35 |
img_height, img_width = image.shape[:2]
|
36 |
|
37 |
+
# Draw detection results
|
38 |
for box in result.boxes:
|
39 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0].cpu().numpy())
|
|
|
|
|
|
|
|
|
40 |
conf = float(box.conf[0])
|
|
|
|
|
41 |
cls_id = int(box.cls[0])
|
42 |
cls_name = result.names[cls_id]
|
43 |
|
44 |
+
# Generate a color for each class
|
45 |
color = tuple(np.random.randint(0, 255, 3).tolist())
|
46 |
|
47 |
+
# Draw bounding box and label
|
48 |
cv2.rectangle(annotated_image, (x1, y1), (x2, y2), color, 2)
|
|
|
|
|
49 |
label = f'{cls_name} {conf:.2f}'
|
|
|
|
|
50 |
(label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
|
|
|
|
51 |
cv2.rectangle(annotated_image, (x1, y1-label_height-5), (x1+label_width, y1), color, -1)
|
|
|
|
|
52 |
cv2.putText(annotated_image, label, (x1, y1-5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
53 |
|
54 |
+
# Convert to YOLO format (normalized)
|
55 |
x_center = (x1 + x2) / (2 * img_width)
|
56 |
y_center = (y1 + y2) / (2 * img_height)
|
57 |
width = (x2 - x1) / img_width
|
58 |
height = (y2 - y1) / img_height
|
59 |
+
layout_annotations.append(f"{cls_id} {x_center:.6f} {y_center:.6f} {width:.6f} {height:.6f}")
|
|
|
|
|
60 |
|
61 |
+
return annotated_image, "\n".join(layout_annotations)
|
|
|
|
|
|
|
62 |
|
63 |
+
def save_layout_annotations(layout_annotations_str):
|
64 |
"""
|
65 |
+
Save layout annotations to a temporary file and return the file path.
|
66 |
|
67 |
Args:
|
68 |
+
layout_annotations_str: Annotations string in YOLO format
|
69 |
|
70 |
Returns:
|
71 |
+
file_path: Path to the saved annotation file
|
72 |
"""
|
73 |
+
if not layout_annotations_str:
|
74 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".txt")
|
77 |
+
with open(temp_file.name, "w") as f:
|
78 |
+
f.write(layout_annotations_str)
|
79 |
+
return temp_file.name
|
80 |
+
|
81 |
+
# Custom CSS for styling
|
82 |
+
custom_css = """
|
83 |
+
.container { max-width: 1200px; margin: auto; }
|
84 |
+
.button-primary { background-color: #4CAF50; color: white; }
|
85 |
+
.button-secondary { background-color: #008CBA; color: white; }
|
86 |
+
.gr-image { border: 2px solid #ddd; border-radius: 5px; }
|
87 |
+
.gr-textbox { font-family: monospace; }
|
88 |
+
"""
|
89 |
|
90 |
+
# Create Gradio interface with enhanced styling
|
91 |
+
with gr.Blocks(
|
92 |
+
title="Latex2Layout Detection",
|
93 |
+
theme=gr.themes.Default(),
|
94 |
+
css=custom_css
|
95 |
+
) as demo:
|
96 |
+
# Header with instructions
|
97 |
+
gr.Markdown(
|
98 |
+
"""
|
99 |
+
# Latex2Layout Layout Detection
|
100 |
+
Upload an image to detect layout elements using the **Latex2Layout** model. View the annotated image and download the results in YOLO format.
|
101 |
+
"""
|
102 |
+
)
|
103 |
|
104 |
+
# Main layout with two columns
|
105 |
with gr.Row():
|
106 |
+
# Input column
|
107 |
+
with gr.Column(scale=1):
|
108 |
+
input_image = gr.Image(
|
109 |
+
label="Upload Image",
|
110 |
+
type="numpy",
|
111 |
+
height=400,
|
112 |
+
elem_classes="gr-image"
|
113 |
+
)
|
114 |
+
detect_btn = gr.Button(
|
115 |
+
"Start Detection",
|
116 |
+
variant="primary",
|
117 |
+
elem_classes="button-primary"
|
118 |
+
)
|
119 |
+
gr.Markdown("**Tip**: Upload a clear image for optimal detection results.")
|
120 |
|
121 |
+
# Output column
|
122 |
+
with gr.Column(scale=1):
|
123 |
+
output_image = gr.Image(
|
124 |
+
label="Detection Results",
|
125 |
+
height=400,
|
126 |
+
elem_classes="gr-image"
|
127 |
+
)
|
128 |
+
layout_annotations = gr.Textbox(
|
129 |
+
label="Layout Annotations (YOLO Format)",
|
130 |
+
lines=10,
|
131 |
+
max_lines=15,
|
132 |
+
elem_classes="gr-textbox"
|
133 |
+
)
|
134 |
+
download_btn = gr.Button(
|
135 |
+
"Download Annotations",
|
136 |
+
variant="secondary",
|
137 |
+
elem_classes="button-secondary"
|
138 |
+
)
|
139 |
+
download_file = gr.File(
|
140 |
+
label="Download File",
|
141 |
+
interactive=False
|
142 |
+
)
|
143 |
+
|
144 |
+
# Example image button (optional)
|
145 |
+
with gr.Row():
|
146 |
+
gr.Button("Load Example Image").click(
|
147 |
+
fn=lambda: cv2.imread("example_image.jpg"),
|
148 |
+
outputs=input_image
|
149 |
+
)
|
150 |
|
151 |
+
# Event handlers
|
152 |
detect_btn.click(
|
153 |
fn=detect_and_visualize,
|
154 |
+
inputs=input_image,
|
155 |
+
outputs=[output_image, layout_annotations],
|
156 |
+
_js="() => { document.querySelector('.button-primary').innerText = 'Processing...'; }",
|
157 |
+
show_progress=True
|
158 |
+
).then(
|
159 |
+
fn=lambda: gr.update(value="Start Detection"),
|
160 |
+
outputs=detect_btn,
|
161 |
+
_js="() => { document.querySelector('.button-primary').innerText = 'Start Detection'; }"
|
162 |
)
|
163 |
|
164 |
download_btn.click(
|
165 |
+
fn=save_layout_annotations,
|
166 |
+
inputs=layout_annotations,
|
167 |
+
outputs=download_file
|
168 |
)
|
169 |
|
170 |
+
|
171 |
+
# Launch the application
|
172 |
if __name__ == "__main__":
|
173 |
+
demo.launch()
|
test_yolo.py
DELETED
@@ -1,58 +0,0 @@
|
|
1 |
-
from ultralytics import YOLO
|
2 |
-
import cv2
|
3 |
-
import numpy as np
|
4 |
-
|
5 |
-
def detect_and_visualize(image_path, model_path):
|
6 |
-
# 加载YOLOv8模型
|
7 |
-
model = YOLO(model_path) # 例如 'yolov8n.pt', 'yolov8s.pt' 等
|
8 |
-
|
9 |
-
# 读取图片
|
10 |
-
image = cv2.imread(image_path)
|
11 |
-
|
12 |
-
# 运行检测
|
13 |
-
results = model(image)
|
14 |
-
|
15 |
-
# 获取第一帧的结果
|
16 |
-
result = results[0]
|
17 |
-
|
18 |
-
# 在原图上绘制检测结果
|
19 |
-
for box in result.boxes:
|
20 |
-
# 获取边界框坐标
|
21 |
-
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
|
22 |
-
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
|
23 |
-
|
24 |
-
# 获取置信度
|
25 |
-
conf = float(box.conf[0])
|
26 |
-
|
27 |
-
# 获取类别ID和名称
|
28 |
-
cls_id = int(box.cls[0])
|
29 |
-
cls_name = result.names[cls_id]
|
30 |
-
|
31 |
-
# 为每个类别生成不同的颜色
|
32 |
-
color = tuple(np.random.randint(0, 255, 3).tolist())
|
33 |
-
|
34 |
-
# 绘制边界框
|
35 |
-
cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)
|
36 |
-
|
37 |
-
# 准备标签文本
|
38 |
-
label = f'{cls_name} {conf:.2f}'
|
39 |
-
|
40 |
-
# 计算标签大小
|
41 |
-
(label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
42 |
-
|
43 |
-
# 绘制标签背景
|
44 |
-
cv2.rectangle(image, (x1, y1-label_height-5), (x1+label_width, y1), color, -1)
|
45 |
-
|
46 |
-
# 绘制标签文本
|
47 |
-
cv2.putText(image, label, (x1, y1-5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
48 |
-
|
49 |
-
# 保存结果图片
|
50 |
-
output_path = 'output_detected.jpg'
|
51 |
-
cv2.imwrite(output_path, image)
|
52 |
-
print(f"检测结果已保存至: {output_path}")
|
53 |
-
|
54 |
-
# 使用示例
|
55 |
-
if __name__ == "__main__":
|
56 |
-
image_path = "./test_math.png" # 替换为你的图片路径
|
57 |
-
model_path = "docgenome_object_detection_yolov8.pt" # 替换为你的模型权重路径
|
58 |
-
detect_and_visualize(image_path, model_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|