Thesis_CLIP / app.py
Chanlefe's picture
Update app.py
3711151 verified
raw
history blame
1.75 kB
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForImageClassification
import gradio as gr
import pytesseract
def classify_meme(image: Image.Image):
    # OCR: extract text from image
    extracted_text = pytesseract.image_to_string(image)
    # Process image with SigLIP2 model
    inputs = processor(images=image, return_tensors="pt").to(model.device)
    with torch.no_grad():
        outputs = model(**inputs)
        probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
    predictions = {labels[i]: float(probs[0][i]) for i in range(len(labels))}
    return {
        "Predictions": predictions,
        "Extracted Text": extracted_text.strip()
    }
# Load model and processor from Hugging Face
model = AutoModelForImageClassification.from_pretrained("google/siglip2-base-patch16-naflex")
processor = AutoProcessor.from_pretrained("google/siglip2-base-patch16-naflex")
labels = model.config.id2label
def classify_meme(image: Image.Image):
inputs = processor(images=image, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
predictions = {labels[i]: float(probs[0][i]) for i in range(len(labels))}
return predictions
# Gradio interface
demo = gr.Interface(
fn=classify_meme,
inputs=gr.Image(type="pil"),
outputs=[
gr.Label(num_top_classes=2, label="Predictions"),
gr.Textbox(label="Extracted Text")
],
title="Meme Classifier with OCR",
description="Upload a meme to classify its sentiment and extract text using OCR."
)
if __name__ == "__main__":
demo.launch(share = True)