""" Data Analyzer class for causal inference pipelines. This module provides the DataAnalyzer class for analyzing datasets and extracting relevant information for causal inference. """ import pandas as pd import numpy as np from typing import Dict, List, Any, Optional class DataAnalyzer: """ Data analyzer for causal inference datasets. This class provides methods for analyzing datasets to extract relevant information for causal inference, such as variables, relationships, and temporal structures. """ def __init__(self, verbose=False): """ Initialize the data analyzer. Args: verbose: Whether to print verbose information """ self.verbose = verbose def analyze_dataset(self, dataset_path: str) -> Dict[str, Any]: """ Analyze a dataset and extract relevant information. Args: dataset_path: Path to the dataset file Returns: Dictionary with dataset analysis results """ try: # Load the dataset df = pd.read_csv(dataset_path) # Get basic statistics n_rows, n_cols = df.shape columns = list(df.columns) # Get column types and categories column_types = {col: str(df[col].dtype) for col in columns} column_categories = self._categorize_columns(df) # Check for temporal structure temporal_structure = self._check_temporal_structure(df) # Identify potential confounders variable_relationships = self._identify_relationships(df) # Look for potential instruments potential_instruments = self._identify_potential_instruments(df) # Check for discontinuities discontinuities = self._check_discontinuities(df) # Construct the analysis result analysis = { "filepath": dataset_path, "n_rows": n_rows, "n_cols": n_cols, "columns": columns, "column_types": column_types, "column_categories": column_categories, "temporal_structure": temporal_structure, "variable_relationships": variable_relationships, "potential_instruments": potential_instruments, "discontinuities": discontinuities } if self.verbose: print(f"Dataset analysis completed: {n_rows} rows, {n_cols} columns") return analysis except Exception as e: if self.verbose: print(f"Error analyzing dataset: {str(e)}") return { "error": str(e), "filepath": dataset_path, "n_rows": 0, "n_cols": 0, "columns": [], "column_types": {}, "column_categories": {}, "temporal_structure": {"has_temporal_structure": False}, "variable_relationships": {"potential_confounders": []}, "potential_instruments": [], "discontinuities": {"has_discontinuities": False} } def _categorize_columns(self, df: pd.DataFrame) -> Dict[str, str]: """ Categorize columns by data type. Args: df: Pandas DataFrame Returns: Dictionary mapping column names to categories """ categories = {} for col in df.columns: if df[col].dtype == 'bool': categories[col] = 'binary' elif pd.api.types.is_numeric_dtype(df[col]): if len(df[col].unique()) <= 2: categories[col] = 'binary' else: categories[col] = 'continuous' else: unique_values = df[col].nunique() if unique_values <= 2: categories[col] = 'binary' elif unique_values <= 10: categories[col] = 'categorical' else: categories[col] = 'high_cardinality' return categories def _check_temporal_structure(self, df: pd.DataFrame) -> Dict[str, Any]: """ Check for temporal structure in the dataset. Args: df: Pandas DataFrame Returns: Dictionary with temporal structure information """ # Look for date/time columns date_cols = [col for col in df.columns if any(keyword in col.lower() for keyword in ['date', 'time', 'year', 'month', 'day', 'period'])] # Check for panel data structure id_cols = [col for col in df.columns if any(keyword in col.lower() for keyword in ['id', 'group', 'entity', 'unit'])] return { "has_temporal_structure": len(date_cols) > 0, "is_panel_data": len(date_cols) > 0 and len(id_cols) > 0, "time_variables": date_cols, "id_variables": id_cols } def _identify_relationships(self, df: pd.DataFrame) -> Dict[str, List[str]]: """ Identify potential variable relationships. Args: df: Pandas DataFrame Returns: Dictionary with relationship information """ # This is a simplified implementation # A real implementation would use statistical tests or causal discovery return { "potential_confounders": [] } def _identify_potential_instruments(self, df: pd.DataFrame) -> List[str]: """ Identify potential instrumental variables. Args: df: Pandas DataFrame Returns: List of potential instrumental variables """ # This is a simplified implementation # A real implementation would use statistical tests # Look for variables that might be instruments based on naming potential_instruments = [col for col in df.columns if any(keyword in col.lower() for keyword in ['instrument', 'random', 'assignment', 'iv'])] return potential_instruments def _check_discontinuities(self, df: pd.DataFrame) -> Dict[str, Any]: """ Check for potential discontinuities for RDD. Args: df: Pandas DataFrame Returns: Dictionary with discontinuity information """ # This is a simplified implementation # A real implementation would use statistical tests return { "has_discontinuities": False, "potential_running_variables": [] }